• Title/Summary/Keyword: Sediment Type

Search Result 295, Processing Time 0.038 seconds

Macrotidal Beach Classifications Considering Beach Profiles and Changes: The Case of Beaches in Taean Region (2017-2018) (지형형태와 변화를 반영한 대조차 해빈 분류: 태안지역 해빈을 사례로(2017-2018))

  • Kim, Chan Woong
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.4
    • /
    • pp.47-65
    • /
    • 2019
  • A case study was conducted in Taean region to seek a more detailed macrotidal beach classification than existing beach classification models (Masselink and Short, 1993). Seepage and ridge & runnel were used for classification. On 20 beaches, 68 transects were surveyed 5 times using VRS-GPS. Cross-section area from the transect profiles, mean grain size from sediment analysis, significant wave height from Swan-wave modeling and beach embaymentization from aerial photograph analysis were used to identify the characteristics of the individual types. The transects were classified into 5 types in Taean region; Type 1: low tidal terrace, Type 2: low tidal terrace & ridge, Type 3: dissipative, Type 4: seasonal ridge, and Type 5: ridge & runnel. Generally, seepage was related to coarse sediment size and ridge & runnel was related to high significant wave height. Each type has different characteristics and there was a tendency between the types. The low tidal terrace type had coarse sediments, because this type is excluded from the littoral cell. In this study, the ridge and runnel type could be applied to the classification because the study area is limited only to the macrotidal environment in Taean region.

Environmental Survey for Productivity Enhancement of Cultured Fleshy Prawn Penaeus chinensis II. Sediment Type-Dependent Environmental Quality and Productivity (대하 양식장의 생산성 향상을 위한 환경 관리에 관한 연구 II. 저질성상에 따른 환경특성 및 생산성)

  • 강주찬;구자근;이정식
    • Journal of Aquaculture
    • /
    • v.13 no.4
    • /
    • pp.303-308
    • /
    • 2000
  • Effects of the sediments on water quality, and the consequent survival and growth of cultured fleshy prawns, Penaeus chil1ensis were determined under selected sediment types for 6 weeks. Dissolved oxygen was 5.1-5.9 mgll in both the sediments containing sand alone, and soft sand (50%) and mud (50%). It decreased to 4.6 mgll in the mud after 6 weeks. Nitrite, ammonia and hydrogen sulfide of the seawater were 0.07-0.12, 0.16-0.29 and 0.009~0.014 mgll in both the sediments containing sand alone, and soft sand (50%) and mud (50%). The values, however, increased to 0.15, 0.36 and 0.018 mgll in the mud sediment, respectively. Survival of the prawn was below 60% in bare and mud sediments. It was above 70% in both the sediments containing sand alone, and soft sand (50%) and mud (50%). Growth and food efficiency of the prawn were significantly lower in the 100 % sand than in the sediment containing soft sand (50%) and mud (50%).

  • PDF

Numerical Analysis for Bed Changes due to Sediment Transport Capacity Formulas and Sediment Transport Modes at the Upstream Approached Channel of the Nakdong River Estuary Barrage (낙동강하구둑 상류 접근수로에서의 유사량 공식 및 유사 이송형태에 따른 하상변동 수치모의에 관한 연구)

  • Ji, Un;Yeo, Woon-Kwang;Han, Seung-Won
    • Journal of Korea Water Resources Association
    • /
    • v.43 no.6
    • /
    • pp.543-557
    • /
    • 2010
  • The effects of the selection for sediment transport equations and advection-diffusion equations according to different sediment transport modes on the modeling results of bed changes were analyzed using the CCHE2D and compared with field data in this paper. The most suitable sediment transport equation and sediment transport mode for advection-diffusion equation were suggested for the upstream approached channel of the Nakdong River Estuary Barrage. The bed changes simulated by the Engelund and Hansen formula were very small in the modeling case for the low and high flow discharges compared with the case of the Ackers and White formula. Also, the numerical modeling with the actual hydraulic event in 2002 presents that the bed change result with the bed load transport type for advection-diffusion equation was close to the field measurement more than the suspended load type.

A Study on the Relation between Riverbed Structure and Pollutant Concentration in Down Stream of Nakdong River (낙동강, 서낙동강, 수영천 하구의 하상구조에 따른 연중 퇴적저토의 오염특성 연구와 부산근해 적조에의 영향에 관한 연구)

  • 황선출;이봉헌
    • Journal of Environmental Science International
    • /
    • v.6 no.5
    • /
    • pp.513-520
    • /
    • 1997
  • This study was performed to investigate the riverbed structure and the pollution type in Nakdong River, Western Nakdong River. and Suyoung Stream. Sediment and water samples were collected at is in Nakdong River. in Western Nakdong River, and 8 states In Suyoung Stream from February 20, 1997 to June 15, 1997. The depth distributions of sampling sites in the three streams were measured and heavy metals(Cd, Pb, Cr, Cu) and pesticides in sediments and COD, BOD, and total nitrogen(T-N) in water samples were analysed. The deepest and the shallowest sites were strate 11(11.58m) and 9(3.35m) in Nakdong River, site 7(6.25m) and 4(2.06m) in Western Nakdong River, and site 8(2.89m) and 1(0. 61m) in Suyoung Stream , respectively. The mean concentration of Cd(45.79ppm) was higher In the sediment of Western Nakdong River than In other two streams and those of Pb(76.25ppm), Cr(48.13ppm), and Cu(77.50ppm) were higher in file sediment of Suyoung Stream than in other two streams. Pesticides(1 kind of organophosphorus and 3 kinds of organochlorine pesticide) were detected only in the sediment of Western Nakdong River. The mean concentrations of COD(20.26ppm), BOD(25.36ppm), and T-N(18.05ppm) were higher in the water sample of Suyoung Stream than In other two streams.

  • PDF

Meander Flume Outlet Sediment Scour Analysis of a Boxed Culvert

  • Thu Hien Thi Le;VanChienNguyen;DucHauLe
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.35-35
    • /
    • 2023
  • The main reason for its instability is sediment scouring downstream of hydraulic structures. Both physical and numerical models have been used to investigate the influence of soil properties on scour hole geometry. Nevertheless, no research has been conducted on resistance parameters that affect sedimentation and erosion. In addition, auxiliary structures like wing walls, which are prevalent in many real-world applications, have rarely been studied for their impact on morphology. The hydraulic characteristics of steady flow through a boxed culvert are calibrated using a 3D Computational Fluid Dynamics model compared with experimental data in this study, which shows a good agreement between water depth, velocity, and pressure profiles. Test cases showed that 0.015 m grid cells had the lowest NRMSE and MAE values. It is also possible to quantify sediment scour numerically by testing roughness/d50 ratios (cs) and diversion walls at a meander flume outlet. According to the findings, cs = 2.5 indicates a close agreement between numerical and analytical results of maximum scour depth after the culvert; four types of wing walls influence geometrical deformation of the meander flume outlet, resulting in erosion at the concave bank and deposition at the convex bank; two short headwalls are the most appropriate solution for accounting for small changes in morphology. A numerical model can be used to estimate sediment scour at the meander exit channel of hydraulic structures based on the roughness parameter of soil material and headwall type.

  • PDF

Comparative Analysis of the Sediment Transport Region based on the Lagrangian Concept (Lagrangian 개념에 의한 부유토사 확산범위 비교분석)

  • Cho, Hong-Yeon;Kim, Chang-Il;Lee, Khil-Ha
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.2
    • /
    • pp.105-112
    • /
    • 2007
  • Sediment transport model based on the Lagrangian concept considering the grain size distribution(GSD) was setup and the change of the sediment diffusion range was analysed in the condition of considering and not considering the GSD. The GSD curve is assumed as the Log-normal distribution function in order to consider the GSD with respect to the Lagrangian concept and the random numbers, i.e. sediment particles, are generated based on the distribution function. The sediment particles is assumed as the spherical type and the random numbers based on the sediment weight is converted to the sediment diameters. Sediment transport patterns are analysed by the settling simulation, in which the settling velocity is computed by the van Rijn formulae and the horizontal diffusion coefficient is used as the constant parameter. The diffusion patterns are very similar to the patterns with GSD condition. The diffusion range defined as the range including 90%, 99% sediment weight of the total sediment weight, however, is larger than without considering GSD condition in 90%-option and shorter than with considering GSD condition in 99-option, respectively. The diffusion range is defined as tile p-percentage of the cumulative sediment weight region with reference to the 50% region, 90%- option, 99%-option, respectively.

Simulation of the Reduction Effect of Soil Loss Using SWAT Model (SWAT 모형을 이용한 토양유실량 저감효과 모의)

  • Jeong, Jin-Kweon;Kim, Hwan-Gi
    • Journal of Environmental Impact Assessment
    • /
    • v.17 no.4
    • /
    • pp.243-253
    • /
    • 2008
  • The purpose of this study was to simulate the reduction effect of soil loss in the Yongdam reservoir watershed using SWAT model. To evaluate accuracy for flow and sediment yield of SWAT model, calibration was performed for the period from Jan. 2002 to Dec. 2003, and the verification for Jan. 2005 to Dec. 2005. The calibration and the verification were carried out using data observed at the Cheoncheon gaging station. The $R^2$ and EI values in terms of a flow were 0.8 and 0.78 respectively for calibration, whereas they for verification were 0.88 and 0.86 respectively. In terms of a sediment yield, they were 0.7 and 0.48 respectively for calibration, whereas for verification were 0.64 and 0.54 respectively. As a results from model simulation, annual mean soil loss rates in terms of forest, paddy and upland were 0.02 ton/ha/yr, 0.15 ton/ha/yr and 7.58 ton/ha/yr, respectively. The results show that the land use type of a upland has more significant impact on a total soil loss as well as a sediment yield than other types of land use. The sediment delivery ratio was determined to be about 0.35. In this study 2 land cover change scenarios for upland area were considered. These scenarios were used an input to SWAT model in order to evaluate their impact on soil loss and sediment delivery. The results show that a reduction of the upland area would reduce the soil loss and sediment yield.

An automatic rotating annular flume for cohesive sediment erosion experiments: Calibration and preliminary results

  • Steven Figueroa;Minwoo Son
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.319-319
    • /
    • 2023
  • Flows of water in the environment (e.g. in a river or estuary) generally occur in complex conditions. This complexity can hinder a general understanding of flows and their related sedimentary processes, such as erosion and deposition. To gain insight in simplified, controlled conditions, hydraulic flumes are a popular type of laboratory research equipment. Linear flumes use pumps to recirculation water. This isn't appropriate for the investigation of cohesive sediments as pumps can break fragile cohesive sediment flocs. To overcome this limitation, the rotating annular flume (RAF) was developed. While not having pumps, a side-effect is that unwanted secondary circulations can occur. To counteract this, the top and bottom lid rotate in opposite directions. Furthermore, a larger flume is considered better as it has less curvature and secondary circulation. While only a few RAFs exist, they are important for theoretical research which often underlies numerical models. Many of the first-generation of RAFs have come into disrepair. As new measurement techniques and models become available, there is still a need to research cohesive sediment erosion and deposition in facilities such as a RAF. New RAFs also can have the advantage of being automatic instead of manually operated, thus improving data quality. To further advance our understanding of cohesive sediment erosion and deposition processes, a large, automatic RAF (1.72 m radius, 0.495 m channel depth, 0.275 m channel width) has been constructed at the Hydraulic Laboratory at Chungnam National University (CNU), Korea. The RAF has the ability to simulate both unidirectional (river) and bidirectional (tide) flows with supporting instrumentation for measuring turbulence, bed shear stress, suspended sediment concentraiton, floc size, bed level, and bed density. Here we present the current status and future prospect of the CNU RAF. In the future, calibration of the rotation rate with bed shear stress and experiments with unidirectional and bidirectional flow using cohesive kaolinite are expected. Preliminary results indicate that the CNU RAF is a valuable tool for fundamental cohesive sediment transport research.

  • PDF

Dissolved Oxygen at the Bottom Boundary Layer of the Ulleung Basin, East Sea (동해 울릉분지 해저 경계면의 용존산소)

  • Kang, Dong-Jin;Kim, Yun-Bae;Kim, Kyung-Ryul
    • Ocean and Polar Research
    • /
    • v.32 no.4
    • /
    • pp.439-448
    • /
    • 2010
  • General consensus on typical vertical profile of dissolved oxygen in the Ulleung Basin is that dissolved oxygen concentration beyond 300 m decreases with increasing depth. However, the results of our observations in 2005 and 2006 revealed three different dissolved oxygen distribution types in the deep layer of the Ulleung Basin. The first type showed oxygen concentration decreasing with increasing depth (Type-1), the second showed oxygen concentration decreasing very sharply near the bottom boundary layer but constant in the bottom adiabatic layer (Type-2), the final was of the oxygen minimum layer above the bottom boundary layer (Type-3). Type-2 was the most common pattern in the Ulleung Basin. Type-1 was most common close to the Japan Basin, including the Ulleung Interplane Gap, while Type-3 was found around Dok do. Oxygen Consumption Rate (OCR) at surface sediment estimated using the dissolved oxygen distribution at the bottom boundary layer was $0.2{\sim}5.8\;mmol{\cdot}m^{-2}d^{-1}$, which coincided with OCR from direct sediment incubation. This implies that organic matter decomposition at surface sediment may play an important role in dissolved oxygen distribution patterns at the bottom boundary layer of the Ulleung Basin.

Rainfall Pattern Regulating Surface Erosion and Its Effect on Variation in Sediment Yield in Post-wildfire Area (산불피해지에 있어서 강우패턴에 따른 침식토사량의 변화)

  • Seo, Jung-Il;Chun, Kun-Woo;Kim, Suk-Woo;Kim, Min-Sik
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.4
    • /
    • pp.534-545
    • /
    • 2010
  • To examine 1) rainfall pattern (i.e., type and intensity) regulating surface erosion on hillslopes in postwildfire area and 2) its effect on variation in sediment yield along the gradient of severity wildfire regimes and elapsed years, we surveyed the amount of sediment yield with respect to daily or net-effective rainfall in 9 plots in eastern coastal region, Republic of Korea. Before field investigation, all plots classified into three groups: low-, mixed- and high-severity wildfire regimes (3 plots in each group). We found that, with decreasing wildfire regimes and increasing elapsed years, the rainfall type regulating surface erosion changed from daily rainfall to net-effective rainfall (considering rainfall continuity) and its intensity increased continuously. In general, wildfires can destroy the stabilized forest floors, and thus rainfall interception by vegetation and litter layer should be reduced. Wildfires can also decrease soil pores in forest floors, and thus infiltration rates of soil are reduced. These two processes lead to frequent occurrence of overland flows required to surface erosion, and sediment yields in post-wildfire areas should increase linearly with increasing rainfall events. With the decreasing severity wildfire regimes and the increasing elapsed years, these processes should be stabilized, and therefore their sediment yields also decreased. Our findings on variations in sediment yields caused by the wildfire regimes and the elapsed years suggest understanding of hydrogeomorphic and ecologic diversities in post-wildfire areas, and these should be carefully examined for both watershed management and disaster prevention.