• Title/Summary/Keyword: Sediment

Search Result 4,187, Processing Time 0.031 seconds

Biogenic Particulate Matter Accumulation in Peter the Great Bay, East Sea (Japan Sea)

  • Hong, Gi-Hoon;Park, Sun-Kyu;Chung, Chang-Soo;Kim, Suk-Hyun;Tkalin, Alexander V.;Lishavskaya, Tatiana S.
    • Journal of the korean society of oceanography
    • /
    • v.31 no.3
    • /
    • pp.134-143
    • /
    • 1996
  • Sediment cores were collected from one site each in Amursky and Ussuriysky Bays in the Peter the great Bay for $^{210}Pb$, org C, N, biogenic Si, ${\delta}^{13}$C and ${\delta}^{15}$N analysis to elucidate the processes of biogenic particulate matter accumulation and early diagenetic change in the upper sediment column. Biogeochemistry at the core sites of both bays shows differences in sedimentation rate, sediment mixing, and diagenetic processes of particulate biogenic matter. Sedimentary organic matter at the core sites in both bays appeared to be largely derived from marine origin. Sedimentation rates are 173 and 118 mg $cm^{-2}$ $yr^{-1}$(0.13 and 0.11 cm $yr^{-1}$) in Amursky and Ussuriysky Bays, respectively. The surface mixed layer in the core top was present in Amursky Bay but not in Ussuriysky Bay. At the core site in Amursky Bay, incorporation of biogenic particulate matter into the sediment from the overlying waters is 236, 19, 142 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which about 70${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the rest are buried at 25 cm sediment horizon. At the core site in Ussuriysky Bay, incorporation of biogenic particulate matter into the sediment from overlying waters is 164, 18, 76 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which less than 50${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the remainder are buried at 25 cm sediment horizon. This large difference of degradation of biogenic matter in the upper 25 cm sediment column appears to be resulted from the difference in sediment mixing rates between the two cores.

  • PDF

Prediction of Watershed Erosion and Deposition Potentials (유역침식 및 퇴적 잠재능 예측모델 개발)

  • Son, Kwang-Ik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.7 no.1 s.24
    • /
    • pp.67-72
    • /
    • 2007
  • A model for predicting potentials of land erosion and deposition over a natural basin was developed based on the mass balance principle. The program was developed based on sediment mass balance principle for each cell in a GIS. Sediment yield from a cell was estimated with RUSLE. The outflow sediment from a cell was calculated by multiplying the sediment yield of the cell by the sediment delivery ratio (SDR) of the cell. The outflow sediment from the upstream cell becomes the incoming sediment of the downstream cell. Therefore the erosion and deposition potential of each cell could be determined from the sediment mass balance i.e., the difference between the incoming and outflow of sediments of each cell. The developed model was validated by comparing the predicted sediment yields for three basins with measured data.

Turbidity Meter Calibrations Based on Grain Size Distribution of Trapped Suspended Material (포획된 부유물질의 입도분포를 고려한 탁도계 검교정)

  • 조홍연;김백운
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.33-38
    • /
    • 2003
  • Turbidity meter calibrations were conducted using bottom sediment and suspended material collected with a vertical array of sediment traps at the coastal water off Gaduk Island. Compared to the bottom sediment comprising sand fraction of approximately 6%, trapped suspended material was composed entirely of silt and clay fractions and showed a tendency to get finer as elevation from the sea-bed increases. Slope parameter of linear regression due to bottom sediment was of minimum value and values of those due to suspended material increased gradually as the height of sediment trap increases (i.e., sediment size decreases). This result shows that turbidity meter calibration using bottom sediment can cause an overestimation error in the calculation of suspended sediment concentration and that the error can reach up to 25% in case of this study. Therefore, it is suggested that the use of a corrected calibration curve based on grain size distribution of suspended material instead of bottom sediment may reduce the measurement error of suspended sediment concentration.

A Study on Controlling Efflux Sediment Diffusion by Jetty Construction at Small Estuary (소규모 하구에서 토사유출 확산제어에 관한 연구)

  • Park, Sang Kil;Park, Hyun Su;Yoon, Jong Su;Lee, Si Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.483-491
    • /
    • 2009
  • In this study, a jetty construction is taken into account for the reduction of sediment diffusive concentration incoming from the upstream river due to the urbanization and industrial development and to minimize the effects on the coastal ecosystems. The field observation and numerical calculation are conducted to analyze the diffusion zone of sediment concentration in the small estuary and coastal area. The specification of the installed jetty which is able to control the sediment concentration was decided based on the prediction of the dispersion area changes in space and time. The selected size and layout for the jetty design were examined for the dispersion zone by numerical calculation and field observation. As a result, the jetties constructed in the estuary retarded the dispersion rate of sediment concentration, so that the effect area of sediment dispersion was obviously decreased. In addition, the measured field data indicated that the sediment deposition in the inside of dikes could be controlled and the right side area of jetties could be preserved without influx sediment diffusion.

Modeling of Sediment and Phosphorous Transport in a River Channel (하천 내 유사와 인 이동에 관한 모델링)

  • Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.2
    • /
    • pp.332-342
    • /
    • 2010
  • A model has been developed to investigate in-river sediment and phosphorus dynamics. This advective-dispersive model is coupled with hydrodynamics and sediment transport submodels to simulate suspended sediment, total dissolved phosphorus, total phosphorus, and particulate phosphorus concentrations under unsteady flow conditions. It emphasizes sediment and phosphorus dynamics in unsteady flow conditions, in which the study differs from many previous solute transport studies, conducted in relatively steady flow conditions. The diffusion wave approaximation was employed for unsteady flow simulations. The first-order adsorption and linear adsorption isotherm model was used on the basis of the three-layered riverbed submodel with riverbed sediment exchange and erosion/deposition processes. Various numerical methods were tested to select a method that had minimal numerical dispersion under unsteady flow conditions. The responses of the model to the change of model parameter values were tested as well.

Pollution Characteristics and Application of River Sediment of the Western Nakdong River (서낙동강의 오염 특성과 오염 퇴적물의 활용 방안)

  • 박흥재;유수진;이봉헌;정징운;안호기;박원우
    • Journal of Environmental Health Sciences
    • /
    • v.27 no.1
    • /
    • pp.51-55
    • /
    • 2001
  • The pollution characteristics of water quality analysis and the heavy metal analysis of river sediment in the Western Nakdong river, and then a commercial tile using the polluted sediment was produced. The analytical results of the riverbed structure and the depth distribution in the Western Nakdong river were that Macdo Stream(site 2) was the deepest(13 ft). The analytical result of water quality showed that BOD was the highest in the Hogei Stream(site 6); COD, Syanduengchi Island(site 1);SS, Macdo Stream(site 2);T-N, Suanduengchi Island(site 1);T-P, Macdo Stream(site 2). Therefore the deeper the site was the higher the pollution concentration was. The result of heavy metal analysis of the river sediment was that Pb and Cr were the highest in Kangdong Bridge(site 9); Cd, Macdo Stream(site 2), so the deeper the site was the higher the pollution concentration was. The production of tile using the mixure of the polluted sediment and the raw material was successful, so the reuse of polluted sediment was possible.

  • PDF

Analysis of Benzophenone in Sediment and Soil by Gas Chromatography/Mass Spectrometry (기체크로마토그래피/질량분석기에 의한 저질 및 토양시료 중 벤조페논의 분석법 연구)

  • 권오승;김은영;류재천
    • Environmental Analysis Health and Toxicology
    • /
    • v.16 no.3
    • /
    • pp.121-126
    • /
    • 2001
  • Analytical method of benzophenone (BP) in sediment and soil was developed by gas chromatography/mass selective detector/selected ion monitoring (GC/MSD/SIM). The ultrasonic extraction of US EPA (method 3550B) method and liquid-liquid extraction for sediment and soil samples were used for the analysis of BP from sediment and soil. BP was extracted with n-hexane. Organic layer was washed with 5% sodium chloride solution. 1∼2 l of the concentrated solution of organic layer was applied to GC/MSD. The retention time of BP peak was 11.10 min. Recovery (%) of BP by ultrasonication from sediment and soil samples was 96.0∼100.6% and 40.0∼83.0%, respectively. Recovery of BP by liquid-liquid extraction was 51∼59% in soil samples. The detection limit of BP in sediment and soil samples were determined to 0.1 ng/g.

  • PDF

The Effect of Cross-Shore Sediment Transport on Bar Parameters: an Experimental Study

  • Demirci, Mustafa;Akoz, M. Sami
    • International Journal of Ocean System Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-7
    • /
    • 2012
  • The cross-shore sediment transport in a coastal region causes the important changes in beach morphological properties. The accurate estimation of the cross-shore sediment transport is important for the designing of the marine structures such as seawalls, jetties, breakwaters etc, and the preventing coastal erosion and accretion due to on-off shore sediment transportation. In this study, the experiments on cross- shore sediment transport carried out in a laboratory wave channel for initial beach slopes of 1/8, 1/10 and 1/15. Using the regular waves with different deep-water wave steepness generated by a pedal-type wave generator, the geometrical characteristics of beach profiles under storm conditions and the parameters affecting on-off shore sediment transport are investigated for the beach materials having medium diameters of $d_{50}$=0.25, 0.32, 0.45, 0.62 and 0.80 mm. The experimental results obtained from this study compared with previous experimental work and found to be of the same magnitude as the experimental measurements and followed the expected basic trend.

Utilization of Centrifuge Test in Geoenvironmental Engineering: Consolidation and Contaminant Transport at Capped Dredged Sediment (원심모형실험의 지반환경공학적 이용: 캡핑된 준설퇴적토의 압밀과 오염원 이동)

  • Kim, Tae-Hyung;Kang, Ki-Min;Lee, Jeong-Woo;Jung, Su-Jung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.1060-1067
    • /
    • 2006
  • Sandy soils are generally used as a capping material to reduce the pollutants transport from the contaminated dredged sediment. However, dredged material capping is not widely used because regulatory agencies are concerned about the potential for contaminants migration through the cap. Movement of contaminated pore water from sediment into cap is mainly related to sediment consolidation during and after cap placement. To evaluate the significance of consolidation induced transport of contaminants from sediment into cap, research centrifuge tests were conducted. Centrifuge test results illustrate that advection and dispersion are the dominant contaminants transport processes and that capping reduces the potential of contaminant migration from the dredged sediment effectively.

  • PDF

Type Selection of Sediment Desilting Machines in Yellow River Irrigation System

  • Wang, Huazhong;Dang, Yongliang
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 1996.06c
    • /
    • pp.257-262
    • /
    • 1996
  • Large amount of water is diverted annually for irrigation along the Yellow River. Owing to the tremendous sediment carried by the river , sediment deposits is an important problem in irrigation and drainage system. The sediment has to be taken out by machines from the irrigation system, otherwise water can not be available in the right place at the right time. In order to improve the sediment desilting efficiency, the sediments that settle in certain sites of a irrigation system must be removed by different desilting machines with special performance and working conditions. Those certain sites include : the diversion canal in the flood plain , the mouth of inlet, settling basin , irrigation and drainage system. In view of removal sediment above, the paper presents the ideas of type selection of desilting machines applied to certain sites. Proposals of making further improvement on performance for some desilting machines are also put forward.

  • PDF