• Title/Summary/Keyword: Sedan Trunk

Search Result 3, Processing Time 0.014 seconds

A Study on the Wheelchair Storage System Mounted on the Trunk of the Sedan Passenger Car (세단 승용차량 트렁크용 휠체어 수납 시스템에 관한 연구)

  • Lim, Gu;Kim, Young Jae;Kim, Yeoun Ok;Yang, Soon Yong
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.8-15
    • /
    • 2019
  • Wheelchair users experience difficulty when using transportation. This is because wheelchair users must use transportation means together with wheelchairs. Therefore, in this paper, we developed a wheelchair storage system for passenger's car trunk. The mechanism is designed to allow a wheelchair and the device to be housed simultaneously in the narrow space of the trunk of the sedan passenger car. Additionally, this wheelchair storage system has implemented an initial load reduction mechanism that can mechanically reduce the initial load. This wheelchair storage system verified the system's operability through the production of the prototype. This system was actually installed in the trunk of the sedan passenger's car to verify the storage process. The operation and storage process of the wheelchair storage system was been perfectly verified. This wheelchair storage system will help a lot of self-driver or an assistant (female or elderly) who use wheelchairs.

Analytical Model for the Analysis of Pop-up Deviation of the Trunk Lid with Torsion Bar (토션바 트렁크의 팝업량 산포 분석을 위한 해석모델)

  • Son, Sungmin;Yun, Jaedeuk;Jung, Yoongho;Yim, Hyangsoo;Jang, Kookjin
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.2
    • /
    • pp.175-181
    • /
    • 2014
  • A four-link mechanism consisting of torsion bars is used for opening the trunk lid in most midsize sedans. When the weight of the lid is in equilibrium with the spring force exerted by torsion bars, the lid stops opening at a pop-up height. However, the actual pop-up height has large deviations from the specified height even with the same parts in the same car model, which leads to quality issues. Automotive manufacturers have experienced this deviation problem despite much effort to resolve it. In this research, we developed a multi-body dynamics model for the analysis of pop-up deviation of a trunk lid with torsion bars, which can simulate the actual pop-up motion of the trunk lid by considering kinematic constraints of the motion and friction forces in joints. We could also determine the most important factor that governs the pop-up height by sensitivity analysis of all parts. The developed system can be used for the analysis of other trunk lid systems to control the tolerance of parts.

Hazardous Gas Detecting and Capturing Robot (유해가스 탐지·포집 로봇)

  • Shin, Juseong;Pyo, Juhyun;Lee, Meungsuk;Park, Sanghyun;Park, Seoyeon;Suh, Jinho;Jin, Maolin
    • Journal of Drive and Control
    • /
    • v.19 no.2
    • /
    • pp.27-35
    • /
    • 2022
  • This study presents one man-portable, hazardous gas detecting and capturing robot. The robot can be fit in the trunk of a sedan car. Its weight is less than 20 kg. A dedicated gas intake mechanism is proposed for the robot. The robot can detect and capture gases at a height of 2 m above the ground, although the height of the robot is about 0.2 m. The performance of the gas intake mechanism is verified through computational fluid dynamics (CFD) analysis and experiments. Its gas detecting signals were acquired by serial communication and processed in Robot Operating System (ROS) based control software. The proposed robot can successfully move on rough terrains such as stairs, sand roads, and rock roads.