• Title/Summary/Keyword: Security Metrics

Search Result 126, Processing Time 0.029 seconds

Malware Detection Using Deep Recurrent Neural Networks with no Random Initialization

  • Amir Namavar Jahromi;Sattar Hashemi
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.177-189
    • /
    • 2023
  • Malware detection is an increasingly important operational focus in cyber security, particularly given the fast pace of such threats (e.g., new malware variants introduced every day). There has been great interest in exploring the use of machine learning techniques in automating and enhancing the effectiveness of malware detection and analysis. In this paper, we present a deep recurrent neural network solution as a stacked Long Short-Term Memory (LSTM) with a pre-training as a regularization method to avoid random network initialization. In our proposal, we use global and short dependencies of the inputs. With pre-training, we avoid random initialization and are able to improve the accuracy and robustness of malware threat hunting. The proposed method speeds up the convergence (in comparison to stacked LSTM) by reducing the length of malware OpCode or bytecode sequences. Hence, the complexity of our final method is reduced. This leads to better accuracy, higher Mattews Correlation Coefficients (MCC), and Area Under the Curve (AUC) in comparison to a standard LSTM with similar detection time. Our proposed method can be applied in real-time malware threat hunting, particularly for safety critical systems such as eHealth or Internet of Military of Things where poor convergence of the model could lead to catastrophic consequences. We evaluate the effectiveness of our proposed method on Windows, Ransomware, Internet of Things (IoT), and Android malware datasets using both static and dynamic analysis. For the IoT malware detection, we also present a comparative summary of the performance on an IoT-specific dataset of our proposed method and the standard stacked LSTM method. More specifically, of our proposed method achieves an accuracy of 99.1% in detecting IoT malware samples, with AUC of 0.985, and MCC of 0.95; thus, outperforming standard LSTM based methods in these key metrics.

Anatomy of Sentiment Analysis of Tweets Using Machine Learning Approach

  • Misbah Iram;Saif Ur Rehman;Shafaq Shahid;Sayeda Ambreen Mehmood
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.97-106
    • /
    • 2023
  • Sentiment analysis using social network platforms such as Twitter has achieved tremendous results. Twitter is an online social networking site that contains a rich amount of data. The platform is known as an information channel corresponding to different sites and categories. Tweets are most often publicly accessible with very few limitations and security options available. Twitter also has powerful tools to enhance the utility of Twitter and a powerful search system to make publicly accessible the recently posted tweets by keyword. As popular social media, Twitter has the potential for interconnectivity of information, reviews, updates, and all of which is important to engage the targeted population. In this work, numerous methods that perform a classification of tweet sentiment in Twitter is discussed. There has been a lot of work in the field of sentiment analysis of Twitter data. This study provides a comprehensive analysis of the most standard and widely applicable techniques for opinion mining that are based on machine learning and lexicon-based along with their metrics. The proposed work is helpful to analyze the information in the tweets where opinions are highly unstructured, heterogeneous, and polarized positive, negative or neutral. In order to validate the performance of the proposed framework, an extensive series of experiments has been performed on the real world twitter dataset that alter to show the effectiveness of the proposed framework. This research effort also highlighted the recent challenges in the field of sentiment analysis along with the future scope of the proposed work.

Common Services Platform for M2M Supporting Security Standards (보안 표준 지원 M2M 공통 서비스 플랫폼)

  • Vakkosov, Sardorjon;Namgung, Jung-Il;Park, Soo-Hyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.76-88
    • /
    • 2016
  • Machine to Machine (M2M) is a technology that presents communication between two or more devices with or without human intervention. M2M communications can be applied for various use cases such as environmental monitoring, health care, smart metering and etc. In most use cases, M2M utilizes sensor nodes to collect data from the intended environment and the data is transmitted back to M2M application through other devices (gateways, sink nodes). In some use cases, M2M devices are being designed to store and process sensor data for improving the reliability of the service; Gateways and sink nodes are also intended to store and process the gathered data from sensor nodes. This kind of approach is very challenging for both academy and industry. In order to enhance the performance of this approach, in this paper, we propose our Common Service Security Platform (CSSP) for M2M devices and gateways. CSSP platform presents solutions for the devices and gateways by making them operate more accurately and efficiently. Besides, we present a comparative analysis of communication protocols and present their performance in accordance with selected metrics.

Design of an Effective Deep Learning-Based Non-Profiling Side-Channel Analysis Model (효과적인 딥러닝 기반 비프로파일링 부채널 분석 모델 설계방안)

  • Han, JaeSeung;Sim, Bo-Yeon;Lim, Han-Seop;Kim, Ju-Hwan;Han, Dong-Guk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.30 no.6
    • /
    • pp.1291-1300
    • /
    • 2020
  • Recently, a deep learning-based non-profiling side-channel analysis was proposed. The deep learning-based non-profiling analysis is a technique that trains a neural network model for all guessed keys and then finds the correct secret key through the difference in the training metrics. As the performance of non-profiling analysis varies greatly depending on the neural network training model design, a correct model design criterion is required. This paper describes the two types of loss functions and eight labeling methods used in the training model design. It predicts the analysis performance of each labeling method in terms of non-profiling analysis and power consumption model. Considering the characteristics of non-profiling analysis and the HW (Hamming Weight) power consumption model is assumed, we predict that the learning model applying the HW label without One-hot encoding and the Correlation Optimization (CO) loss will have the best analysis performance. And we performed actual analysis on three data sets that are Subbytes operation part of AES-128 1 round. We verified our prediction by non-profiling analyzing two data sets with a total 16 of MLP-based model, which we describe.

The Software Quality Testing on the basis of the International Standard ISO/IEC 25023 (국제표준 ISO/IEC 25023 을 기반으로 한 소프트웨어 품질평가)

  • Jung, Hye-Jung
    • Journal of the Korea Convergence Society
    • /
    • v.7 no.6
    • /
    • pp.35-41
    • /
    • 2016
  • As software is very important, modern men are interesting software quality testing. In this paper, we analyze the Internation standard and Test data, so, we propose the testing method by analysing testing data. We compare ISO/IEC 9126-2 testing model with ISO/IEC 25023 testing model. On the basis of ISO/IEC 25023, we classify the test data and we analyze the difference of International Standard to functionality, reliability, usability, efficiency, maintainability, portability, compatability, and security. By reality 331 testing data, we classify test data, and analyze difference according to sex. We find regression model by functionality, usability and testing date and we prove difference of testing date and the number of error by tester. Also, we prove difference of the number of error in software type.

A Study of Matrix Model for Core Quality Measurement based on the Structure and Function Diagnosis of IoT Networks (구조 및 기능 진단을 토대로 한 IoT네트워크 핵심품질 매트릭스 모델 연구)

  • Noh, SiChoon;Kim, Jeom Goo
    • Convergence Security Journal
    • /
    • v.14 no.7
    • /
    • pp.45-51
    • /
    • 2014
  • The most important point in the QoS management system to ensure the quality of the IoT system design goal is quality measurement system and the quality evaluation system. This research study is a matrix model for the IoT based on key quality measures by diagnosis system structure and function. Developing for the quality metrics measured Internet of Things environment will provide the foundation for the Internet of Things quality measurement/analysis. IoT matrix system for quality evaluation is a method to describe the functional requirements and the quality requirements in a single unified table for quality estimation performed. Comprehensive functional requirements and quality requirements by assessing the association can improve the reliability and usability evaluation. When applying the proposed method IoT quality can be improved while reducing the QoS signaling, the processing, the basis for more efficient quality assurances as a whole.

Analyzing Trends of Commoditized Confidential Computing Frameworks for Implementing Trusted Execution Environment Applications (신뢰 실행 환경 어플리케이션 개발을 위한 상용 컨피덴셜 컴퓨팅 프레임워크 동향 및 비교 분석)

  • Kim, Seongmin
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.4
    • /
    • pp.545-558
    • /
    • 2021
  • Recently, Confidential computing plays an important role in next-generation cloud technology along with the development of trusted execution environments(TEEs), as it guarantees the trustworthiness of applications despite of untrusted nature of the cloud. Both academia and industry have actively proposed commercialized confidential computing solutions based on Intel SGX technology. However, the lack of clear criteria makes developers difficult to select a proper confidential computing framework among the possible options when implementing TEE-based cloud applications. In this paper, we derive baseline metrics that help to clarify the pros and cons of each framework through in-depth comparative analysis against existing confidential computing frameworks. Based on the comparison, we propose criteria to application developers for effectively selecting an appropriate confidential computing framework according to the design purpose of TEE-based applications.

A Detecting Technique for the Climatic Factors that Aided the Spread of COVID-19 using Deep and Machine Learning Algorithms

  • Al-Sharari, Waad;Mahmood, Mahmood A.;Abd El-Aziz, A.A.;Azim, Nesrine A.
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.131-138
    • /
    • 2022
  • Novel Coronavirus (COVID-19) is viewed as one of the main general wellbeing theaters on the worldwide level all over the planet. Because of the abrupt idea of the flare-up and the irresistible force of the infection, it causes individuals tension, melancholy, and other pressure responses. The avoidance and control of the novel Covid pneumonia have moved into an imperative stage. It is fundamental to early foresee and figure of infection episode during this troublesome opportunity to control of its grimness and mortality. The entire world is investing unimaginable amounts of energy to fight against the spread of this lethal infection. In this paper, we utilized machine learning and deep learning techniques for analyzing what is going on utilizing countries shared information and for detecting the climate factors that effect on spreading Covid-19, such as humidity, sunny hours, temperature and wind speed for understanding its regular dramatic way of behaving alongside the forecast of future reachability of the COVID-2019 around the world. We utilized data collected and produced by Kaggle and the Johns Hopkins Center for Systems Science. The dataset has 25 attributes and 9566 objects. Our Experiment consists of two phases. In phase one, we preprocessed dataset for DL model and features were decreased to four features humidity, sunny hours, temperature and wind speed by utilized the Pearson Correlation Coefficient technique (correlation attributes feature selection). In phase two, we utilized the traditional famous six machine learning techniques for numerical datasets, and Dense Net deep learning model to predict and detect the climatic factor that aide to disease outbreak. We validated the model by using confusion matrix (CM) and measured the performance by four different metrics: accuracy, f-measure, recall, and precision.

KAB: Knowledge Augmented BERT2BERT Automated Questions-Answering system for Jurisprudential Legal Opinions

  • Alotaibi, Saud S.;Munshi, Amr A.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.346-356
    • /
    • 2022
  • The jurisprudential legal rules govern the way Muslims react and interact to daily life. This creates a huge stream of questions, that require highly qualified and well-educated individuals, called Muftis. With Muslims representing almost 25% of the planet population, and the scarcity of qualified Muftis, this creates a demand supply problem calling for Automation solutions. This motivates the application of Artificial Intelligence (AI) to solve this problem, which requires a well-designed Question-Answering (QA) system to solve it. In this work, we propose a QA system, based on retrieval augmented generative transformer model for jurisprudential legal question. The main idea in the proposed architecture is the leverage of both state-of-the art transformer models, and the existing knowledge base of legal sources and question-answers. With the sensitivity of the domain in mind, due to its importance in Muslims daily lives, our design balances between exploitation of knowledge bases, and exploration provided by the generative transformer models. We collect a custom data set of 850,000 entries, that includes the question, answer, and category of the question. Our evaluation methodology is based on both quantitative and qualitative methods. We use metrics like BERTScore and METEOR to evaluate the precision and recall of the system. We also provide many qualitative results that show the quality of the generated answers, and how relevant they are to the asked questions.

Evaluation and Comparative Analysis of Scalability and Fault Tolerance for Practical Byzantine Fault Tolerant based Blockchain (프랙티컬 비잔틴 장애 허용 기반 블록체인의 확장성과 내결함성 평가 및 비교분석)

  • Lee, Eun-Young;Kim, Nam-Ryeong;Han, Chae-Rim;Lee, Il-Gu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.271-277
    • /
    • 2022
  • PBFT (Practical Byzantine Fault Tolerant) is a consensus algorithm that can achieve consensus by resolving unintentional and intentional faults in a distributed network environment and can guarantee high performance and absolute finality. However, as the size of the network increases, the network load also increases due to message broadcasting that repeatedly occurs during the consensus process. Due to the characteristics of the PBFT algorithm, it is suitable for small/private blockchain, but there is a limit to its application to large/public blockchain. Because PBFT affects the performance of blockchain networks, the industry should test whether PBFT is suitable for products and services, and academia needs a unified evaluation metric and technology for PBFT performance improvement research. In this paper, quantitative evaluation metrics and evaluation frameworks that can evaluate PBFT family consensus algorithms are studied. In addition, the throughput, latency, and fault tolerance of PBFT are evaluated using the proposed PBFT evaluation framework.