• 제목/요약/키워드: Secure connectivity probability

검색결과 4건 처리시간 0.016초

Secure Connectivity Probability of Multi-hop Clustered Randomize-and-Forward Networks

  • Wang, Xiaowei;Su, Zhou;Wang, Guangyi
    • ETRI Journal
    • /
    • 제39권5호
    • /
    • pp.729-736
    • /
    • 2017
  • This work investigates secure cluster-aided multi-hop randomize-and-forward networks. We present a hop-by-hop multi-hop transmission scheme with relay selection, which evaluates for each cluster the relays that can securely receive the message. We propose an analytical model to derive the secure connectivity probability (SCP) of the hop-by-hop transmission scheme. For comparison, we also analyze SCPs of traditional end-to-end transmission schemes with two relay-selection policies. We perform simulations, and our analytical results verify that the proposed hop-by-hop scheme is superior to end-to-end schemes, especially with a large number of hops or high eavesdropper channel quality. Numerical results also show that the proposed hop-by-hop scheme achieves near-optimal performance in terms of the SCP.

ST Reliability and Connectivity of VANETs for Different Mobility Environments

  • Saajid, Hussain;DI, WU;Memon, Sheeba;Bux, Naadiya Khuda
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제13권5호
    • /
    • pp.2338-2356
    • /
    • 2019
  • Vehicular ad-hoc network (VANET) is the name of technology, which uses 'mobile internet' to facilitate communication between vehicles. The aim is to ensure road safety and achieve secure communication. Therefore, the reliability of this type of networks is a serious concern. The reliability of VANET is dependent upon proper communication between vehicles within a given amount of time. Therefore a new formula is introduced, the terms of the new formula correspond 1 by 1 to a class special ST route (SRORT). The new formula terms are much lesser than the Inclusion-Exclusion principle. An algorithm for the Source-to-Terminal reliability was presented, the algorithm produced Source-to-Terminal reliability or computed a Source-to-Terminal reliability expression by calculating a class of special networks of the given network. Since the architecture of this class of networks which need to be computed was comparatively trivial, the performance of the new algorithm was superior to the Inclusion-Exclusion principle. Also, we introduce a mobility metric called universal speed factor (USF) which is the extension of the existing speed factor, that suppose same speed of all vehicles at every time. The USF describes an exact relation between the relative speed of consecutive vehicles and the headway distance. The connectivity of vehicles in different mobile situations is analyzed using USF i.e., slow mobility connectivity, static connectivity, and high mobility connectivity. It is observed that $p_c$ probability of connectivity is directly proportional to the mean speed ${\mu}_{\nu}$ till specified threshold ${\mu}_{\tau}$, and decreases after ${\mu}_{\tau}$. Finally, the congested network is connected strongly as compared to the sparse network as shown in the simulation results.

A Secure Key Predistribution Scheme for WSN Using Elliptic Curve Cryptography

  • Rajendiran, Kishore;Sankararajan, Radha;Palaniappan, Ramasamy
    • ETRI Journal
    • /
    • 제33권5호
    • /
    • pp.791-801
    • /
    • 2011
  • Security in wireless sensor networks (WSNs) is an upcoming research field which is quite different from traditional network security mechanisms. Many applications are dependent on the secure operation of a WSN, and have serious effects if the network is disrupted. Therefore, it is necessary to protect communication between sensor nodes. Key management plays an essential role in achieving security in WSNs. To achieve security, various key predistribution schemes have been proposed in the literature. A secure key management technique in WSN is a real challenging task. In this paper, a novel approach to the above problem by making use of elliptic curve cryptography (ECC) is presented. In the proposed scheme, a seed key, which is a distinct point in an elliptic curve, is assigned to each sensor node prior to its deployment. The private key ring for each sensor node is generated using the point doubling mathematical operation over the seed key. When two nodes share a common private key, then a link is established between these two nodes. By suitably choosing the value of the prime field and key ring size, the probability of two nodes sharing the same private key could be increased. The performance is evaluated in terms of connectivity and resilience against node capture. The results show that the performance is better for the proposed scheme with ECC compared to the other basic schemes.

클라우드 환경에서 IoT 정보 오류를 고려한 지형 정보 기반의 키 관리 기법 (A Key Management Technique Based on Topographic Information Considering IoT Information Errors in Cloud Environment)

  • 정윤수;최정희
    • 디지털융복합연구
    • /
    • 제18권10호
    • /
    • pp.233-238
    • /
    • 2020
  • 클라우드 환경에서는 센서 및 웨어러블 장치를 이용한 IoT 기기가 다양한 환경에서 응용되고 있으며 그에 따른 IoT 기기에서 생성되는 정보를 정확하게 판별하는 기술들이 활발하게 연구되고 있다. 그러나, 전력 및 보안과 같은 IoT 환경의 제약사항으로 인하여 IoT 장치에서 발생하는 정보가 매우 취약하기 때문에 금전 피해 및 인명 피해가 증가하고 있다. 본 논문에서는 IoT 정보를 정확하게 수집·분석하기 위해서 IoT 정보 오류를 고려한 지형 정보 기반의 키 관리기법을 제안한다. 제안 기법은 IoT 장치를 클라우드 환경에서 임의로 배치할 경우 IoT 장치의 연결성을 확보하기 위해서 IoT 배치 오류를 허용하는 동시에 지형 정보를 n개의 그룹으로 그룹핑 하도록 한다. 특히, 각 그룹핑 된 지형 정보에는 전체 키 풀에서 랜덤하게 선택된 임의의 키를 할당한 후 IoT 정보에 포함된 지형 정보의 키와 확률적으로 높은 키 값을 IoT 장치의 연결성으로 확보할 수 있도록 한다. 특히, 제안 기법은 확률적 딥러닝을 이용하여 IoT 지형 정보의 키를 시드로 추출하기 때문에 IoT 장치에 대한 정보 오류를 낮출수 있다.