• Title/Summary/Keyword: Secure Routing

Search Result 150, Processing Time 0.018 seconds

A Secure, Hierarchical and Clustered Multipath Routing Protocol for Homogenous Wireless Sensor Networks: Based on the Numerical Taxonomy Technique

  • Hossein Jadidoleslamy
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.8
    • /
    • pp.121-136
    • /
    • 2023
  • Wireless Sensor Networks (WSNs) have many potential applications and unique challenges. Some problems of WSNs are: severe resources' constraints, low reliability and fault tolerant, low throughput, low scalability, low Quality of Service (QoS) and insecure operational environments. One significant solution against mentioned problems is hierarchical and clustering-based multipath routing. But, existent algorithms have many weaknesses such as: high overhead, security vulnerabilities, address-centric, low-scalability, permanent usage of optimal paths and severe resources' consumption. As a result, this paper is proposed an energy-aware, congestion-aware, location-based, data-centric, scalable, hierarchical and clustering-based multipath routing algorithm based on Numerical Taxonomy technique for homogenous WSNs. Finally, performance of the proposed algorithm has been compared with performance of LEACH routing algorithm; results of simulations and statistical-mathematical analysis are showing the proposed algorithm has been improved in terms of parameters like balanced resources' consumption such as energy and bandwidth, throughput, reliability and fault tolerant, accuracy, QoS such as average rate of packet delivery and WSNs' lifetime.

Delay-Tolerant Network Routing Algorithm for Periodical Mobile Nodes (주기적 이동 노드를 위한 Delay-Tolerant Network 라우팅 알고리즘)

  • Lee, Youngse;Lee, Gowoon;Joh, Hangki;Ryoo, Intae
    • Journal of Digital Contents Society
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2014
  • Delay-Tolerant Network (DTN) is an asynchronous networking technology that has been deployed for the networking environment in which steady communication paths are not available, and therefore it stores receiving data in a data storage and forward them only when the communication links are established. DTN can be applied to sensor networks and mobile ad-hoc network (MANET) as well as space communication that supports data transmissions among satellites. In DTN networking environments, it is very important to secure a scheme that has relatively low routing overhead and high reliability, so that it can enhance the overall routing speed and performance. In order for achieving efficient data transmissions among the nodes that have comparatively periodic moving patterns, this paper proposes a time information based DTN routing scheme which is able to predict routing paths. From the simulation results using Omnet++ simulation tools, it has been verified that the proposed time information based DTN routing algorithm shows satisfied levels of routing speed and routing reliability even with lower routing overheads.

Identification Technition of Malicious Behavior node Based on Collaboration in MANET (MANET에서 협업기반의 악의적인 노드 행위 식별기법)

  • Jeon, Seo-In;Ryu, Keun-Ho
    • The KIPS Transactions:PartC
    • /
    • v.19C no.2
    • /
    • pp.83-90
    • /
    • 2012
  • MANET(Mobile Ad-Hoc Network) has a weakness from a security aspect because it operates where no wired network is built, which causes the exposed media, dynamic topology, and the lack of both central monitoring and management. It is especially difficult to detect and mitigate a malicious node because there is not a mediator which controls the network. This kind of malicious node is closely connected to the routing in the field of study of Ad-Hoc security. Accordingly this paper proposes the method on how to enhance the security for the safe and effective routing by detecting the malicious node. We propose MBC(Identification technition of Malicious Behavior node based on Collaboration in MANET) that can effectively cope with malicious behavior though double detecting the node executing the malicious behavior by the collaboration between individual node and the neighbor, and also managing the individual nodes in accordance with the trust level obtained. The simulation test results show that MBC can find the malicious nodes more accurately and promptly that leads to the more effectively secure routing than the existing method.

Security Model for Tree-based Routing in Wireless Sensor Networks: Structure and Evaluation

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.4
    • /
    • pp.1223-1247
    • /
    • 2012
  • The need for securing Wireless Sensor Networks (WSNs) is essential especially in mission critical fields such as military and medical applications. Security techniques that are used to secure any network depend on the security requirements that should be achieved to protect the network from different types of attacks. Furthermore, the characteristics of wireless networks should be taken into consideration when applying security techniques to these networks. In this paper, energy efficient Security Model for Tree-based Routing protocols (SMTR) is proposed. In SMTR, different attacks that could face any tree-based routing protocol in WSNs are studied to design a security reference model that achieves authentication and data integrity using either Message Authentication Code (MAC) or Digital Signature (DS) techniques. The SMTR communication and processing costs are mathematically analyzed. Moreover, SMTR evaluation is performed by firstly, evaluating several MAC and DS techniques by applying them to tree-based routing protocol and assess their efficiency in terms of their power requirements. Secondly, the results of this assessment are utilized to evaluate SMTR phases in terms of energy saving, packet delivery success ratio and network life time.

Intelligent On-demand Routing Protocol for Ad Hoc Network

  • Ye, Yongfei;Sun, Xinghua;Liu, Minghe;Mi, Jing;Yan, Ting;Ding, Lihua
    • Journal of Information Processing Systems
    • /
    • v.16 no.5
    • /
    • pp.1113-1128
    • /
    • 2020
  • Ad hoc networks play an important role in mobile communications, and the performance of nodes has a significant impact on the choice of communication links. To ensure efficient and secure data forwarding and delivery, an intelligent routing protocol (IAODV) based on learning method is constructed. Five attributes of node energy, rate, credit value, computing power and transmission distance are taken as the basis of segmentation. By learning the selected samples and calculating the information gain of each attribute, the decision tree of routing node is constructed, and the rules of routing node selection are determined. IAODV algorithm realizes the adaptive evaluation and classification of network nodes, so as to determine the optimal transmission path from the source node to the destination node. The simulation results verify the feasibility, effectiveness and security of IAODV.

A Secure Energy-Efficient Routing Scheme Using Distributed Clustering in Wireless Sensor Networks (무선 센서 네트워크에서 분산 클러스터링을 이용한 안전한 에너지 효율적인 라우팅 기술)

  • Cheon, EunHong;Lee, YonSik
    • Convergence Security Journal
    • /
    • v.16 no.5
    • /
    • pp.3-9
    • /
    • 2016
  • The wireless sensor networks have become an economically viable monitoring solution for a wide variety of civilian and military applications. The main challenge in wireless sensor networks is the secure transmission of information through the network, which ensures that the network is secure, energy-efficient and able to identify and prevent intrusions in a hostile or unattended environment. In that correspondence, this paper proposes a distributed clustering process that integrates the necessary measures for secure wireless sensors to ensure integrity, authenticity and confidentiality of the aggregated data. We use the notion of pre-distribution of symmetric and asymmetric keys for a secured key management scheme, and then describe the detailed scheme which each sensor node within its cluster makes use of the pre-distribution of cryptographic parameters before deployment. Finally, we present simulation results for the proposed scheme in wireless sensor network.

A Study on the Implement of Test Bed for Ad-hoc Networks (Ad-hoc 네트워크 테스트 베드 구현에 관한 연구)

  • Lee, Heung-Jae;Ga, Soon-Mo;Choe, Jin-Kyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.31 no.11A
    • /
    • pp.1059-1067
    • /
    • 2006
  • AODV(Ad-hoc On-demand Distance Vector) routing protocol was devised for use of mobile nodes in Ad-hoc network. When we use the AODV routing protocol in Ad-hoc networks with high mobility, disturbance of optimized route path and link break occur. In order to solve the shortcomings, this paper proposes a new routing protocol in which new routing control messages are added to the existing AODV. The proposed protocol minimizes link break and transmission delay while is able to secure the optimized route path constantly in changes of network topology The performance of the proposed routing protocol was evaluated by using us2 network simulator. The actual Ad-hoc network test bed provides us the most reliable experimental data for Ad-hoc networks. In order to support this experimental environment, the dissertation also developed an efficient embedded system on which AODV routing protocol, NAT, Netfilter can run and other event message can be verified without declining efficiency. The correct operation of AODV routing protocol has been verified in both the Ad-hoc network test bed in which the embedded system was used, and Ad-hoc networks linked with Ethernet backbone network.

A Study on Trust Improvement of Packets Transmission using ZCN and N2N Authentication Technique (ZCN과 N2N 인증 기법을 이용한 패킷 전송에 대한 신뢰성 향상에 관한 연구)

  • Yang, Hwanseok
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.11 no.4
    • /
    • pp.61-68
    • /
    • 2015
  • MANET has various vulnerability in wireless network and is more vulnerable in security because central management is not performed. In particular, routing attack may decrease performance of the overall network because the mobile node acts as a router. In this paper, we proposed authentication technique for improving the reliability of the network by increasing the integrity of the routing control packet and blocking effectively attacks that occur frequently in the inside. The proposed technique is consisted of two authentication methods of ZCN and N2N. ZCN authentication method is to elect CA nodes and monitor the role of the CA nodes. N2N authentication method is for an integrity check on the routing packets between nodes. Index key is determined by combining the hop count value to shared key table issued from CA in order to increase the robustness of the internal attack. Also, the overhead of key distribution was reduced by distributing a shared key to nodes certificated from CA. The excellent performance of the proposed method was confirmed through the comparison experiments.

A Proposal of Secure Route Discovery Protocol for Ad Hoc Network (Ad Hoc 네트워크를 위한 안전한 경로발견 프로토콜 제안)

  • Park Young-Ho;Kim Jin-Gyu;Kim Cheol-Su
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.10 no.3
    • /
    • pp.30-37
    • /
    • 2005
  • Ad hoc network is a collection of mobile nodes without using any infrastructure, it , is using in the various fields. Because ad hoc network is vulnerable to attacks such as routing disruption and resource consumption, it is in need of routing protocol security. In this paper, we propose two secure route-discovery protocols. One is a protocol using hash function. This protocol is weak in active attack but has some merits such as small data of transmission packet and small computation at each hop. The other is a protocol using hash function and public key cryptography. This protocol is strong in active attack.

  • PDF

Stability-based On-demand Multi-path Distance Vector Protocol for Edge Internet of Things

  • Dongzhi Cao;Peng Liang;Tongjuan Wu;Shiqiang Zhang;Zhenhu Ning
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2658-2681
    • /
    • 2023
  • In edge computing scenarios, IoT end devices play a crucial role in relaying and forwarding data to significantly improve IoT network performance. However, traditional routing mechanisms are not applicable to this scenario due to differences in network size and environment. Therefore, it becomes crucial to establish an effective and reliable data transmission path to ensure secure communication between devices. In this paper, we propose a trusted path selection strategy that comprehensively considers multiple attributes, such as link stability and edge cooperation, and selects a stable and secure data transmission path based on the link life cycle, energy level, trust level, and authentication status. In addition, we propose the Stability-based On-demand Multipath Distance Vector (STAOMDV) protocol based on the Ad hoc AOMDV protocol. The STAOMDV protocol implements the collection and updating of link stability attributes during the route discovery and maintenance process. By integrating the STAOMDV protocol with the proposed path selection strategy, a dependable and efficient routing mechanism is established for IoT networks in edge computing scenarios. Simulation results validate that the proposed STAOMDV model achieves a balance in network energy consumption and extends the overall network lifespan.