• Title/Summary/Keyword: Section function

Search Result 1,086, Processing Time 0.023 seconds

Lateral-torsional buckling of functionally graded tapered I-beams considering lateral bracing

  • Rezaiee-Pajand, Mohammad;Masoodi, Amir R.;Alepaighambar, Ali
    • Steel and Composite Structures
    • /
    • v.28 no.4
    • /
    • pp.403-414
    • /
    • 2018
  • In this paper, the lateral-torsional buckling of axially-transversally functionally graded tapered beam is investigated. The structure cross-section is assumed to be symmetric I-section, and it is continuously laterally supported by torsional springs through the length. In addition, the height of cross-section varies linearly throughout the length of structure. The proposed formulation is obtained for the case that the elastic and shear modulus change as a power function along the beam length and section height. This structure carries two concentrated moments at the ends. In this study, the lateral displacement and twisting angle relation of the beam are defined by sinusoidal series. After establishing the eigenvalue equation of unknown constants, the beam critical bending moment is found. To validate the accuracy and correctness of results, several numerical examples are solved.

Mechanical properties of thin-walled composite beams of generic open and closed sections

  • Rajasekaran, S.
    • Structural Engineering and Mechanics
    • /
    • v.21 no.5
    • /
    • pp.591-620
    • /
    • 2005
  • A general analytical model for thin-walled composite beams with an arbitrary open/(or/and) closed cross section and arbitrary laminate stacking sequence i.e., symmetric, anti-symmetric as well as un-symmetric with respect to the mid plane of the laminate, is developed in the first paper. All the mechanical properties, mechanical centre of gravity and mechanical shear centre of the cross section are defined in the function of the geometry and the material properties of the section. A program "fungen" and "clprop" are developed in Fortran to compute all the mechanical properties and tested for various isotropic sections first and compared with the available results. The locations of mechanical centre of gravity and mechanical shear centre are given with respect to the fibre angle variation in composite beams. Variations of bending and torsional stiffness are shown to vary with respect to the fibre angle orientations.

A Study on the Elements of Moving Poster Design (무빙 포스터 디자인을 구성하는 요소 연구)

  • Chun, Christine Hyeyeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.361-367
    • /
    • 2020
  • This study analyzed the factors consisting moving poster design. In order to analyze the elements of moving poster, the researcher reorganized the elements of moving posters by referring to the previous studies on printed posters, motion graphics and works of moving posters. In this study, moving poster components were classified into 'communication', 'visual and form', and 'sound'. In 'communication' section, moving posters had narrative elements, including scenes, because of the time and movement added by the poster's original function. The 'visual and form' section was classified into graphics, layouts, movement, and time. Graphics refered to various graphic objects constituting the screen such as photo, illustration, typography, color, diagram. Layout means screen layout, size, and orientation of the screen. Movement section was divided into 'subject of movement' and 'attributes of movement'. Time was classified physical time such as playing time and subjective time felt by the audience. Also, the researcher categorized 'sound' as an additional section, since most moving posters did not include sound.

Optimum Midship Section Design of Hatchcoverless Container Ship (무개형(無蓋型) 콘테이너선(船)의 중앙단면(中央斷面) 최적구조설계(最適構造設計))

  • Kim, K.S.;Jong, H.S.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.34 no.4
    • /
    • pp.84-90
    • /
    • 1997
  • The paper is mainly concerned with the applications tn develop an optimum structural design procedure for hatchcoverless container ship. L.R rules are applied to determine the scantlings of the longitudinal members. As for an object function of midship section design, the total sectional area of all the longitudinal members for midship section is selected. The SUMT procedure combined with direct search method is applied to the solution of nonlinear optimum design problem to find a optimum midship section arrangement. The results of optimization study show that the weight of model ship may be saved about 8.0% per unit length.

  • PDF

An Optimal Design Algorithm for The Large-Scale Structures with Discrete Steel Sections (규격부재로 이루어진 대형 철골구조물의 최적설계를 위한 알고리즘)

  • 이환우;최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.10a
    • /
    • pp.95-100
    • /
    • 1990
  • An optimization method has been developed to find the minimum weight design of steel building structures which consist of the commercially available discrete sections. In this study, an emphasis was particularly placed on the practical applicability of optimization algorithm in engineering practice. The structure Is optimized through element optimization under the element level constraints first and then, if there is any violation of structural level constraints, it is adequately compensated by the constraint error correction vector obtained through the sensitivity analysis. A scaling procedure is introduced for the problems of large violated displacement constraint. The oscillation control in the objective function is also discussed. By dividing the available H-sections into two groups based on their section characteristics, much improved relationships between section variables were obtained and used efficiently in searching the optimum section in the section table.

  • PDF

Spectroscopic Study of the Ã1A" - X~1A' System of CHBr

  • Shin, Seung-Keun;Park, Seung-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.905-908
    • /
    • 2011
  • We report fluorescence excitation and emission spectra of the CHBr molecule generated via pyrolysis of $CH_3Br$ in a molecular beam experiment. The 193 nm attenuation cross sections were estimated from the reduction of the CHBr signal as a function of the excimer laser fluence. The derived 193 nm absorption cross section for CHBr [$(3.24{\pm}0.59){\times}10^{-17}\;cm^2$] is slightly higher than the absorption cross section previously determined for CHCl [$(2.6{\pm}0.8){\times}10^{-17}\;cm^2$], but the difference is within the estimated uncertainties in the measured cross section.

Faulted Section Identification Method in The Distribution Systems with Renewable Energy Resources (신재생 에너지 전원을 고려한 배전선로 고장구간 판단 기법)

  • Lee, Han-Seong;Jeon, Cheol-Woo;Kim, Young-Kook;Lim, Seong-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.10
    • /
    • pp.1321-1327
    • /
    • 2014
  • Faulted section identification is one of the most important function in distribution automation systems. Conventional over current detection based fault indicators frequently mal-operate due to the reverse fault current from the renewable energy resources. This paper present a new faulted section identification method based on the fuzzy decision making technique. In order to establish feasibility of the proposed method, case studies using Matlab Simulink has been performed.

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Hydroelastic Responses for a Ship Advancing in Waves (파랑중 전진하는 선박의 유탄성 응답)

  • 이호영;임춘규;정형배
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.4
    • /
    • pp.16-21
    • /
    • 2003
  • The very large container ships have been built recently and those ships have very small structural rigidity compared with the other conventional ships. As a result, the destruction of ship hull is occurred by the springing including to warping phenomena due to encounter waves. In this study, the solutions of hydrodynamic coefficients are obtained by solving the three dimensional source distribution method and the forward speed Green function representing a translating and pulsating source potential for infinite water depth is used to calculating the integral equation. The vessel is longitudinally divided into various sections and the added mass, wave damping and wave exciting forces of each section is calculated by integrating the dynamic pressures over the mean wetted section surface. The equations for six degree freedom of motions is obtained for each section in the frequency domain and stiffness matrix is calculated by Euler beam theory. The computations are carried out for very large ship and effects of bending and torsional ridigity on the wave frequency and angle are investigated.

Flutter characteristics of axially functional graded composite wing system

  • Prabhu, L.;Srinivas, J.
    • Advances in aircraft and spacecraft science
    • /
    • v.7 no.4
    • /
    • pp.353-369
    • /
    • 2020
  • This paper presents the flutter analysis and optimum design of axially functionally graded box beam cantilever wing section by considering various geometric and material parameters. The coupled dynamic equations of the continuous model of wing system in terms of material and cross-sectional properties are formulated based on extended Hamilton's principle. By expressing the lift and pitching moment in terms of plunge and pitch displacements, the resultant two continuous equations are simplified using Galerkin's reduced order model. The flutter velocity is predicted from the solution of resultant damped eigenvalue problem. Parametric studies are conducted to know the effects of geometric factors such as taper ratio, thickness, sweep angle as well as material volume fractions and functional grading index on the flutter velocity. A generalized surrogate model is constructed by training the radial basis function network with the parametric data. The optimized material and geometric parameters of the section are predicted by solving the constrained optimal problem using firefly metaheuristics algorithm that employs the developed surrogate model for the function evaluations. The trapezoidal hollow box beam section design with axial functional grading concept is illustrated with combination of aluminium alloy and aluminium with silicon carbide particulates. A good improvement in flutter velocity is noticed by the optimization.