• Title/Summary/Keyword: Section Method

Search Result 5,076, Processing Time 0.034 seconds

Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method (유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계)

  • Song, Y.J.;Hahn, Y.H.;Park, C.D.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.

Studies on Ceramic Powder Fabrication from Rice Phytoliths I. Pulverization of Bice Husks Using Rotating Knife Cutting Method and Changes of Their Densities (벼의 규소체로부터 세라믹 분말제조에 관한 연구 I. 회전칼날절단 방식에 의한 왕겨 분화와 그에 따른 밀도변화)

  • 강대갑
    • Journal of Powder Materials
    • /
    • v.2 no.2
    • /
    • pp.135-141
    • /
    • 1995
  • As the first step of study on fabrication of ceramic powders from phytoliths in rice, especially in rice husks, pulverization method of rice husks and the properties of milled rice husks were investigated. Impact methods, such as ball milling, were not meaningful for pulverizing elastic and thin fabric structure of rice husks. The most effective one was cutting method. In the present work, a rotating knife cutting method was applied to pulverizing rice husks. A 40-mesh screen was inserted under the rotating knives. The most portion of the milled powder was found in -50/+100 mesh section. Morphology of the milled rice husks revealed that the husks larger than 70 mesh were flake-like shape, at -70/+100 mesh section relatively equi-axed shape, at -170/+325 mesh section rod-like shape, and below 325 mesh section dust-like shape. Tap density of raw rice husks was about 0.1 $g/cm^3$, while those of milled rice husks were over $0.4 g/cm^3$. This meant that, for a given volume of reactor, raw material charge can be increased more that 4 times when using milled rice husks than unmilled one. True densities of unmilled and milled rice husks were higher than $1.4 g/cm^3$, and increased with decreasing milled sizes.

  • PDF

Three-dimensional Vibration Analysis of Circular Rings with an Elliptical or Circular Cross-section (타원형 또는 원형 단면을 가진 원형 링의 3차원적 진동해석)

  • Shim, Hyun-Ju;Woo, Ha-Young;Kang, Jae-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.10 s.115
    • /
    • pp.1024-1035
    • /
    • 2006
  • A three-dimensional (3-D) method of analysis is presented for determining the free vibration frequencies and mode shapes of thick, complete (circumferentially closed), circular rings with an elliptical or circular cross-section. Displacement components $u_r,\;u_\theta\;and\;u_z$ in the radial, circumferential, and axial directions, respectively, are taken to be periodic in ${\theta}$ and in time, and algebraic polynomials in the r and z directions. Potential (strain) and kinetic energies of the circular rings are formulated, and upper bound values of the frequencies are obtained by minimizing the frequencies. As the degree of the polynomials is increased, frequencies converge to the exact values. Convergence to four-digit exactitude is demonstrated for the first five frequencies of the rings. Novel numerical results are presented for the circular rings having an elliptical cross-section based upon 3-D theory. Comparisons are also made between the frequencies from the present 3-D Ritz method and ones obtained from thin and thick ring theories, experiments, and another 3-D method.

An Experimental and analytical study of CFS strengthened Beams (탄소섬유쉬트 보강 보의 실험 및 해석적 연구)

  • Hwang, Jin-Seog
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.177-185
    • /
    • 1998
  • This paper deals with the flexural behaviors of R.C beams strengthened by carbon fiber sheets. The behaviors of strengthened beams which were preloaded up to 50%, 60% and 70% of the ultimate load of unstrengthened beam are compared with that of a beam which was not preloaded. The structural behaviors of strengthened beams are compared with analytical method in terms of load-strain of concrete, load-strain of steel bar, load-strain of CFS and falilure load. Four cases of analytical method are investigated according to cracked section or partially cracked section and including strain hardening effect of steel bar or not. Comparing the results of test and analysis, both are similar in terms of load-strain of concrete, and falilure load, the results of analytical method underestimate the failure load. But each results of load-strain of steel bar, load-strain of CFS near at failure is some different, thus near at failure the composite action between CFS and upper concrete is assumed to be disturbed. Consequently, the analytical method was proved to be efficient and accurate in estimating the flexural response of CFS strengthened RC beams.

  • PDF

Estimating Ungauged River Section for Flood Stage Analysis (홍수위 해석을 위한 미측정 하천 단면 추정)

  • Shin, Sat Byeol;Kang, Moon Seong;Jun, Sang Min;Song, Jung Hun;Kim, Kyeung;Ryu, Jeong Hoon;Park, Jihoon;Lee, Do Gil;Lee, Kyeong-Do
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.58 no.5
    • /
    • pp.11-18
    • /
    • 2016
  • The objective of this study was to develop the simple method to estimate ungauged river section for flood stage analysis. Damage prediction should be prioritized using hydrological modeling to reduce flood risk. Mostly, the geographical data using hydrological modeling depends on national river cross-section survey. However because of the lack of measured data, it is difficult to apply to many local streams or small watersheds. For this reason, this study suggest the method to estimate unguaged river cross-section. Simple regression equations were derived and used to estimate river cross-section by analyzing the correlation between the river cross-sectional characteristics (width, height and area). The estimated cross-sections were used to simulate flood level by HEC-RAS (Hydrologic Engineering Center's River Analysis System). The applicability of this method was verified by comparing simulated flood level between measured and estimated cross-section. The water surface elevation of the flood stage analysis was 6.56-7.24 m, 5.33-5.95 m and 6.12-6.75 m for measured cross section, for estimated cross section and for estimated cross section based on DEM elevation, respectively. Further study should consider other factors for more accurate flood stage analysis. This study might be used one of the guidelines to estimate ungauged river section for flood stage analysis.

Determination of Structural Member Section based on Nonlinear Behaviors of Steel Cable-Stayed Bridges and Harmony Search Algorithm (강사장교 비선형거동과 하모니 서치 알고리즘에 기반한 사장교 구성 단면 결정)

  • Sang-Soo Ma;Tae-Yun Kwon;Won-Hong Lee;Jin-Hee Ahn
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.4
    • /
    • pp.1-12
    • /
    • 2024
  • In this study, a determination method of structural member section based on Nonlinear behaviors of steel cable-stayed bridges and the Harmony Search algorithm was presented. The Harmony Search algorithm determines the structural member section of cable-stayed bridges by repeating the process of setting the initial value, initializing the harmony memory, configuring the new harmony memory, and updating the harmony memory to search for the optimal value. The nonlinear initial shape analysis of a three-dimensional steel cable-stayed bridge was performed with the cross-section of the main member selected by the Harmony Search algorithm, and the optimal cross-section of the main members of the cable-stayed bridge, such as pylons, girders, cross-beams, and cables, reflecting the complex behavior characteristics and the nonlinearity of each member was determined in consideration of the initial tension and shape. The total weight was used as the objective function for determining the cross-section of the main member of the cable-stayed bridges, and the load resistance ability and serviceability based on the ultimate state design method were used as the restraint conditions. The width and height ratio of the girder and cross-section were considered additional restraint conditions. The optimal sections of the main members were made possible to be determined by considering the geometry and material nonlinearity of the pylons, girders, and cross-sections and the nonlinearity of the cable members. As a result of determining the optimal cross-section, it was confirmed that the proposed analysis method can determine the optimal cross-section according to the various constraint conditions of the cable-stayed bridge, and the structural member section of the cable-stayed bridge considering the nonlinearity can be determined through the Harmony Search algorithm.

The Comparison of Plants and Vegetation Transect in a Straight and a Restoration Section-A Case Study of Bulgwang Stream in Seoul, Korea- (직강화 하천구간과 자연형 하천복원구간의 식물상 및 출현빈도 비교-불광천을 사례로-)

  • 정진아;김혜주;이은희
    • Korean Journal of Environment and Ecology
    • /
    • v.18 no.1
    • /
    • pp.61-74
    • /
    • 2004
  • The study was to investigate and compare plants and frequency of appearing species of vegetation transect in a straight and a restoration Section of Bulgwang stream in Seoul. Some part of Bulgwang stream was restored as a closed-to-nature stream. This present study consists of two investigations, the first investigation being conducted on May and the second one on August -September 2003. Based on the analysis of the data collected from both investigations, this study classified and listed all of the plants appeared in a straight and a restoration section of the stream. The study used the Belt-transect method in order to examine and analyze discover the appearance frequency of the vegetaton transect per 200 meters. During the period of the first investigation and the second one, plants of 33 families, 73 classes, and 88 species appeared in the straight section, while plants of 36 families, 76 classes, and 90 species appeared in the restoration section. The Naturalized Index of the straight section was 22.7%, and that of the restoration section was 21.1%. As shown on the results indicating that the Urbanization Index of the straight section was 7.8%, and that of the restoration section was 7.4%, the Urbanization Index of the straight section was slightly higher than the restoration section. The results using belt-transect analysis method showed that in case of the straight section, the plants of the highest appearance frequency on the riverside were Persicaria hydropiper and Humulus japonicus. On the contrary, in the case of restoration section, the plants showing a higher appearance frequency on the riverside were identified as Salix gracilistyla, Persicaria hydropiper, Rumex crispus, and Humulus japonicus. In conclusion, there was no difference between the straight and the restoration section in the bank with regard to vegetation transect. However, a remarkable difference was found on the riverside for the Salix gracilistyla which was introduced in the restoration section.

A Study on the Design of Two-Span Continuous P.S. Composite Bridges (2경간 P.S. 연속합성보 교량의 설계에 관한 연구)

  • 구민세;신동기;이재혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.203-210
    • /
    • 1995
  • A construction method for continuous prestressed Composite Bridges(PCB's) is developed and successfully applied to the design of two-span continuous PCB's of five different span lengths. The construction of continuous PCB's goes through 17 different loading conditions. for each loading condition, the allowable stress design method is used to determine section properties. The analytical results of two-span continuous PCB's arc compared with those of simple PCB's. The comparison shows that the use of the proposed method can reduce 10-15 percents of the concrete section area and approximate 28 percents of the steel section area, as well as 5-8 percents of the girder height. The study indicates that the use of the proposed PCB's method can significantly reduce construction and maintenance costs of bridges.

  • PDF

A Reliability Analysis on the To-Box Reinforcement Method of PSC Beam Bridges (PSC보의 박스화 보강방법의 신뢰성해석)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.21 no.3 s.75
    • /
    • pp.94-100
    • /
    • 2006
  • The goal of this study is to show the way to increase the safety of deteriorated PSC beam bridges by the to-box reinforcing method. This method is to change the open girder section into the closed box section by connecting bottom flanges of neighboring PSC girders with the precast panels embedding PS tendons at the anchor block. The box section is composed of three concrete members with different casting ages, RC slab, PSC beam, precast panel. This different aging requires a time-dependent analysis considering construction sequences. Reliability index and failure probability are produced by the AFOSM reliability analysis. Transversely five schemes and longitudinally two schemes are considered. The full reinforcing scheme, transversely and longitudinally, shows the highest reliability index, but it requires more cost for retrofit. The partial reinforcing scheme 4, 4-1 are recommended in this study as the economically best scheme.

A Study on Design Optimization System for Thin Walled Beam Structures (박판보 구조물의 최적설계 시스템 개발에 관한 연구)

  • 편성돈;이상범;임홍재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.6
    • /
    • pp.238-246
    • /
    • 2000
  • In this paper, an optimization method of thin walled beam structures is proposed, Stiffnesses of a thin walled beam are characterized by the thickness of thin plates and the shape of the typical section of the beam. Explicit formula for section properties such as area, area moment of inertia, and torsional constants are derived using the response surface method. The explicit formula can be used for the optimal design of a structural system which consists of complicated thin walled beams. A vehicle structural system is optimized to demonstrate the proposed method.

  • PDF