• Title/Summary/Keyword: Section 1782

Search Result 4, Processing Time 0.017 seconds

Coming To America: The Use of 28 U.S.C. § 1782

  • Robertson, Ann Ryan;Friedman, Scott L.
    • Journal of Arbitration Studies
    • /
    • v.25 no.3
    • /
    • pp.59-90
    • /
    • 2015
  • Since 1855, the federal courts of the United States have been empowered to assist in the gathering of evidence for use before foreign tribunals. Today, the source of that authority is 28 U.S.C. ${\S}1782$ which permits the courts to order a person "to give [ ] testimony... or to produce a document ... for use in a proceeding in a foreign or international tribunal${\cdots}$ ." It was generally assumed, until the United States Supreme Court's decision of Intel Corp. v. Advanced Micro Devices, Inc. in 2004, that arbitration tribunals were not "foreign tribunals" for purposes of 28 U.S.C. ${\S}1782$. While the issue in Intel did not involve an arbitration tribunal, a statement by the Supreme Court in dicta has called into question the exact parameters of the words "foreign tribunal," resulting in a split of opinion among the federal courts of the United States. This article explores the legislative history of 28 U.S.C. ${\S}1782$, examines the United States Supreme Court decision in Intel, and discusses the split among the courts of the United States regarding the interpretation of "foreign tribunal." The article further surveys emerging issues: is an arbitration tribunal in a case involving foreign parties and seated in the United States a "foreign tribunal"; does agreeing to the use of the IBA Rules on the Taking of Evidence in International Arbitration circumscribe the use of 28 U.S.C. ${\S}1782$; can a party be ordered to produce documents located outside the United States; and is there a role for judicial estoppel in determining whether an application pursuant to 28 U.S.C. ${\S}1782$ should be granted?

Design of Hybrid Magnetic Levitation System using Intellignet Optimization Algorithm (지능형 최적화 기법 이용한 하이브리드 자기부상 시스템의 설계)

  • Cho, Jae-Hoon;Kim, Yong-Tae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1782-1791
    • /
    • 2017
  • In this paper, an optimal design of hybrid magnetic levitation(Maglev) system using intelligent optimization algorithms is proposed. The proposed maglev system adopts hybrid suspension system with permanent-magnet(PM) and electro magnet(EM) to reduce the suspension power loss and the teaching-learning based optimization(TLBO) that can overcome the drawbacks of conventional intelligent optimization algorithm is used. To obtain the mathematical model of hybrid suspension system, the magnetic equivalent circuit including leakage fluxes are used. Also, design restrictions such as cross section areas of PM and EM, the maximum length of PM, magnetic force are considered to choose the optimal parameters by intelligent optimization algorithm. To meet desired suspension power and lower power loss, the multi object function is proposed. To verify the proposed object function and intelligent optimization algorithms, we analyze the performance using the mean value and standard error of 10 simulation results. The simulation results show that the proposed method is more effective than conventional optimization methods.

Effect of Multiple Copies of Cohesins on Cellulase and Hemicellulase Activities of Clostridium cellulovorans Mini-cellulosomes

  • Cha, Jae-Ho;Matsuoka, Satoshi;Chan, Helen;Yukawa, Hideaki;Inui, Masayuki;Doi, Roy H.
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.11
    • /
    • pp.1782-1788
    • /
    • 2007
  • Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpAl), two cohesins (mini-CbpA12), or four cohesins (mini-CbpAl234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and com fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with com fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpAl234 (1.8-fold) and then mini-CbpAl2 (1.3-fold), and the lowest synergy was observed with mini-CbpAl (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls.

Evaluation of neutronics parameters during RSG-GAS commissioning by using Monte Carlo code

  • Surian Pinem;Wahid Luthfi;Peng Hong Liem;Donny Hartanto
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1775-1782
    • /
    • 2023
  • Several reactor physics commissioning experiments were conducted to obtain the neutronic parameters at the beginning of the G.A. Siwabessy Multi-purpose Reactor (RSG-GAS) operation. These parameters are essential for the reactor to safety operate. Leveraging the experimental data, this study evaluated the calculated core reactivity, control rod reactivity worth, integral control rod reactivity curve, and fuel reactivity. Calculations were carried out with Serpent 2 code using the latest neutron cross-section data ENDF/B-VIII.0. The criticality calculations were carried out for the RSG-GAS first core up to the third core configuration, which has been done experimentally during these commissioning periods. The excess reactivity for the second and third cores showed a difference of 510.97 pcm and 253.23 pcm to the experiment data. The calculated integral reactivity of the control rod has an error of less than 1.0% compared to the experimental data. The calculated fuel reactivity value is consistent with the measured data, with a maximum error of 2.12%. Therefore, it can be concluded that the RSG-GAS reactor core model is in good agreement to reproduce excess reactivity, control rod worth, and fuel element reactivity.