Browse > Article

Effect of Multiple Copies of Cohesins on Cellulase and Hemicellulase Activities of Clostridium cellulovorans Mini-cellulosomes  

Cha, Jae-Ho (Section of Molecular and Cellular Biology, University of California)
Matsuoka, Satoshi (Section of Molecular and Cellular Biology, University of California)
Chan, Helen (Section of Molecular and Cellular Biology, University of California)
Yukawa, Hideaki (Research Institute of Innovative Technology for the Earth)
Inui, Masayuki (Research Institute of Innovative Technology for the Earth)
Doi, Roy H. (Section of Molecular and Cellular Biology, University of California)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.11, 2007 , pp. 1782-1788 More about this Journal
Abstract
Cellulosomes in Clostridium cellulovorans are assembled by the interaction between the repeated cohesin domains of a scaffolding protein (CbpA) and the dockerin domain of enzyme components. In this study, we determined the synergistic effects on cellulosic and hemicellulosic substrates by three different recombinant mini-cellulosomes containing either endoglucanase EngB or endoxylanase XynA bound to mini-CbpA with one cohesin domain (mini-CbpAl), two cohesins (mini-CbpA12), or four cohesins (mini-CbpAl234). The assembly of EngB or XynA with mini-CbpA increased the activity against carboxymethyl cellulose, acid-swollen cellulose, Avicel, xylan, and com fiber 1.1-1.8-fold compared with that for the corresponding enzyme alone. A most distinct improvement was shown with com fiber, a natural substrate containing xylan, arabinan, and cellulose. However, there was little difference in activity between the three different mini-cellulosomes when the cellulosomal enzyme concentration was held constant regardless of the copy number of cohesins in the cellulosome. A synergistic effect was observed when the enzyme concentration was increased to be proportional to the number of cohesins in the mini-cellulosome. The highest degree of synergy was observed with mini-CbpAl234 (1.8-fold) and then mini-CbpAl2 (1.3-fold), and the lowest synergy was observed with mini-CbpAl (1.2-fold) when Avicel was used as the substrate. As the copy number of cohesin was increased, there was more synergy. These results indicate that the clustering effect (physical enzyme proximity) of the enzyme within the mini-cellulosome is one of the important factors for efficient degradation of plant cell walls.
Keywords
Cellulosome; Clostridium cellulovorans; cellulase; hemicellulase;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
Times Cited By Web Of Science : 14  (Related Records In Web of Science)
연도 인용수 순위
1 Boraston, A. B., B. W. McLean, J. M. Kormos, M. Alam, N. R. Gilkes, C.A. Haynes, P. Tomme, D. G. Kilburn, and R. A. Warren. 1999. Carbohydrate-binding modules: Diversity of structure and function, pp. 202-211. In H. J. Gilbert, G. J. Davies, B. Henrissat, and B. Svensson (eds.), Recent Advances in Carbohydrate Bioengineering. The Royal Society of Chemistry, Cambridge, United Kingdom
2 Doi, R. H. and A. Kosugi. 2004. Cellulosomes: Plant-cellwall- degrading enzyme complexes. Nat. Rev. Microbiol. 2: 541-551   DOI   ScienceOn
3 Gerngross, U. T., M. P. Romaniec, T. Kobayashi, N. S. Huskisson, and A. L. Demain. 1993. Sequencing of a Clostridium thermocellum gene (cipA) encoding the cellulosomal SL-protein reveals an unusual degree of internal homology. Mol. Microbiol. 8: 325-334   DOI   ScienceOn
4 Kataeva, I., G. Guglielmi, and P. Béguin. 1997. Interaction between Clostridium thermocellum endoglucanase CelD and polypeptides derived from the cellulosome-integrating protein CipA: Stoichiometry and cellulolytic activity of the complexes. Biochem. J. 326: 617-624   DOI
5 Kosugi, A., K. Murashima, and R. H. Doi. 2002. Characterization of non-cellulosomal subunits, AfrA and BgaA from Clostridium cellulovorans, that cooperate with the cellulosome in plant cell wall degradation. J. Bacteriol. 184: 6859-6865   DOI
6 Morag, E., E. A. Bayer, and R. Lamed. 1990. Relationship of cellulosomal and noncellulosomal xylanases of Clostridium thermocellum to cellulose-degrading enzymes. J. Bacteriol. 172: 6098-6105   DOI
7 Murashima, K., C. L. Chen, A. Kosugi, Y. Tamaru, R. H. Doi, and S.-L. Wong. 2002. Heterologous production of Clostridium cellulovorans engB, using protease-deficient Bacillus subtilis, and preparation of active recombinant cellulosomes. J. Bacteriol. 184: 76-81   DOI
8 Stragier, P., C. Bonamy, and C. Karmazyn-Campelli. 1988. Processing of a sporulation sigma factor in Bacillus subtilis: How morphological structure could control gene expression. Cell 52: 697-704   DOI   ScienceOn
9 Goldstein, M. A., M. Takagi, S. Hashida, O. Shoseyov, R. H. Doi, and I. H. Segel. 1993. Characterization of the cellulosebinding domain of the Clostridium cellulovorans cellulosebinding protein A. J. Bacteriol. 175: 5762-5768   DOI
10 Shoseyov, O., M. Takagi, M. A. Goldstein, and R. H. Doi. 1992. Primary sequence analysis of Clostridium cellulovorans cellulose binding protein A (CbpA). Proc. Natl. Acad. Sci. USA 89: 3483-3487
11 Koukiekolo, R., H.-Y. Cho, A. Kosugi, M. Inui, H. Yukawa, and R. H. Doi. 2005. Degradation of corn fiber by Clostridium cellulovorans cellulases and hemicellulases and contribution of scaffolding protein CbpA. Appl. Environ. Microbiol. 71: 3504-3511   DOI   ScienceOn
12 Lamed, R., E. Setter, and E. A. Bayer. 1983. Characterization of a cellulose-binding, cellulase-containing complex in Clostridium thermocellum. J. Bacteriol. 156: 828-836
13 Wu, X.-C., W. Lee, L. Tran, and S.-L. Wong. 1991. Engineering a Bacillus subtilis expression-secretion system with a strain deficient in six extracellular proteases. J. Bacteriol. 173: 4952-4958   DOI
14 Tamaru, Y. and R. H. Doi. 2001. Pectate lyase A, an enzymatic subunit of the Clostridium cellulovorans cellulosome. Proc. Natl. Acad. Sci. USA 98: 4125-4129
15 Cho, H.-Y., H. Yukawa, M. Inui, R. H. Doi, and S.-L. Wong. 2004. Production of minicellulosomes from Clostridium cellulovorans in Bacillus subtilis WB800. Appl. Environ. Microbiol. 70: 5704-5707   DOI   ScienceOn
16 Murashima, K., A. Kosugi, and R. H. Doi. 2003. Synergistic effects of cellulosomal xylanase and cellulases from Clostridium cellulovorans on plant cell wall degradation. J. Bacteriol. 185: 1518-1524   DOI
17 Patthra, P., G. H. Chon, K. Ratanakhanokchai, K. L. Kyu, O.-H. Jhee, J. Kang, W. H. Kim, K.-M. Choi, G.-S. Park, J.-S. Lee, H. Park, M. S. Rho, and Y.-S. Lee. 2006. Selection of multienzyme complex-producing bacteria under aerobic cultivation. J. Microbiol. Biotechnol. 16: 1269-1275   과학기술학회마을
18 Morag, E., A. Lapidot, D. Govorko, R. Lamed, M. Wilchek, E. A. Bayer, and Y. Shoham. 1995. Expression, purification, and characterization of the cellulose-binding domain of the scaffoldin subunit from the cellulosome of Clostridium thermocellum. Appl. Environ. Microbiol. 61: 1980-1986
19 Kosugi, A., Y. Amano, K. Murashima, and R. H. Doi. 2004. Hydrophilic domains of scaffolding protein CbpA promote glycosyl hydrolase activity and localization of cellulosomes to the cell surface of Clostridium cellulovorans. J. Bacteriol. 186: 6351-6359   DOI   ScienceOn
20 Ichiishi, A., S. Sheweita, and R. H. Doi. 1998. Characterization of EngF from Clostridium cellulovorans and identification of a novel cellulose binding domain. Appl. Environ. Microbiol. 64: 1086-1090
21 Wu, S.-C., J. C. Yeung, Y. Duan, R. Ye, S. J. Szarka, H. R. Habibi, and S.-L. Wong. 2002. Functional production and characterization of a fibrin-specific single-chain antibody fragment from Bacillus subtilis: Effects of molecular chaperones and a wall-bound protease on antibody fragment production. Appl. Environ. Microbiol. 68: 3261-3269   DOI
22 Bayer, E. A., E. Morag, and R. Lamed. 1994. The cellulosome -- a treasure-trove for biotechnology. Trends Biotechnol. 12: 379-386   DOI   ScienceOn
23 Salamitou, S., O. Raynaud, M. Coughlan, P. Beguin, and J.-P. Aubert. 1994. Recognition specificity of the duplicated segments present in Clostridium thermocellum endoglucanase CelD and in the cellulosome-integrating protein CipA. J. Bacteriol. 176: 2822-2827   DOI
24 Tachaapaikoon, C., Y. S. Lee, K. Rantanakhanokchai, S. Pinitglang, K. L. Kyu, M. S. Rho, and S.-K. Lee. 2006. Purification and characterization of two endoxylanases from an alkaliphilic Bacillus halodurans C-1. J. Microbiol. Biotechnol. 16: 613-618   과학기술학회마을
25 Dygert, S., L. H. Li, D. Florida, and J. A. Thoma. 1965. Determination of reducing sugar with improved precision. Anal. Biochem. 13: 367-374   DOI   ScienceOn
26 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254   DOI   ScienceOn
27 Kusuma, K., G. H. Chon, J.-S. Lee, J. Kongkiattikajorn, K. Ratanakhanokchai, K. L. Kyu, J. H. Lee, M. S. Roh, Y. Y. Choi, H. Park and Y. S. Lee. 2006. Hydrolysis of agricultural residues and kraft pulps by xylanolytic enzymes from alkaliphilic Bacillus sp. strain BK. J. Microbiol. Biotechnol. 16: 1255-1261   과학기술학회마을
28 Lee, Y. E. and P. O. Lim. 2004. Purification and characterization of two thermostable xylanases from Paenibacillus sp. DG- 22. J. Microbiol. Biotechnol. 14: 1014-1021   과학기술학회마을
29 Takagi, M., S. Hashida, M. A. Goldstein, and R. H. Doi. 1993. The hydrophobic repeated domain of the Clostridium cellulovorans cellulose-binding protein (CbpA) has specific interactions with endoglucanases. J. Bacteriol. 175: 7119-7122   DOI
30 Murashima, K., A. Kosugi, and R. H. Doi. 2002. Synergistic effects on crystalline cellulose degradation between cellulosomal cellulases from Clostridium cellulovorans. J. Bacteriol. 184: 5088-5095   DOI