• Title/Summary/Keyword: Secretory cell

Search Result 340, Processing Time 0.025 seconds

Developmental Changes of the Oocyte and Its Enveloping Layers, in Micropercops swinhonis (Pisces: Perciformes)

  • Park, Jong-Young;Richardson, Ken-C.Richardson;Kim, Ik-Soo
    • Animal cells and systems
    • /
    • v.2 no.4
    • /
    • pp.501-506
    • /
    • 1998
  • In the goby Micropercops swinhonis, the development of its egg's enveloping layers could be divided into 4 stages. In the earliest developmental period, stage I, there is a simple oocyte surrounded by a layer of squamous follicular cells. Stage II corresponds to the yolk vesicle stage of vitellogenesis. Here the initial follicular layer has become bilaminar with the retention of its outer squamous cell layer and the acquisition of an inner cuboidal cell layer just over the zona radiata. The number and size of the cuboidal cells increases throughout this stage. Stage III corresponds to the yolk granule stage of true vitellogenesis. Here the cuboidal cells begin to be replaced by columnar cells. As the oocyte grows, the columnar cells increase in size. The columnar cells produce cytoplasmic neutral mucins and by the end of this stage their cytoplasm has been filled with this mucin. In stage IV a single layer of squamous cells still remained as the outer follicular layer of the oocyte. The secretory activity of the inner follicular layers' columnar cells has ceased and they had lost their cell wall integrity and ended as a series of bullet-shaped, neutral mucin deposits.

  • PDF

Immunostimulatory effect of Korean traditional medicine Acanthopanacis Cortex

  • Chang, In-Ae;Shin, Hye-Young;Kim, Youn-Chul;Yun, Yong-Gab;Park, Hyun
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.283-288
    • /
    • 2007
  • Acanthopanacis Cortex (AC) has been popularly used as an herbal medicine for medical treatment of rheumatoid arthritis, insomnia, impotence and diabetes. Here, we investigated immunostimulating effects of the aqueous extract of AC on macrophage. We studied nitric oxide (NO) and tumor necrosis factor (TNF)-${\alpha}$ release in response to AC treatment, as they are important secretory products of macrophage. AC alone induce the NO and TNF-${\alpha}$ production. AC increase c-Jun NH2-terminal kinase 1/2 (JNK) and extracellular signal-regulated kinase (ERK) phosphorylation but does not p38 activation in RAW 264.7 cells. Also AC resulted in the enhanced cell-surface expression of CD80 and CD14. In addition, AC resulted in enhanced T cell-stimulatory capacity and increased T cell secretion of interferon (IFN)-gamma. After feeding with AC to mouse for 10 days, the change of $CD28^+$ and $CD40^+$ population was analyzed. AC increased $CD28^+$ population in splenocytes in vivo. These studies indicate that AC induces macrophage activation and suggest the possible use of AC in macrophage-based immunotherapies.

Transmission electron microscopic findings of the tribocytic organ of Fibricola seoulensis (Fi'bricola seoulenis 조직융해구의 투사전자현미경 소견)

  • 송호복
    • Parasites, Hosts and Diseases
    • /
    • v.31 no.4
    • /
    • pp.315-320
    • /
    • 1993
  • We observed ultra-structure of the tribocytic organ of Firicola seoulensis with transmission electron microscope. Microvilli are observed on the surface of the tribocytic organ. Below the muscle layer, we can find three types of cells. Type I cell has electron lucent cytoplasm with a few granules, while type II cell shows electron dense cytoplasm and the particulate granules. Type III cell's electron dense cytoplasm possesses many granules. Of the above three cells, Type I and II cells are believed as tegumental cells. Type III cells are thought as glandular cells specific to the tribocytic organ. This finding on also explain the secretory function of the tribocytic organ of f seoulensis.

  • PDF

Identification of Sugar-Responsive Genes and Discovery of the New Functions in Plant Cell Wall

  • Lee, Eun-Jeong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2007.04a
    • /
    • pp.65-73
    • /
    • 2007
  • The objective of this study is to understand how regulatory mechanisms respond to sugar status for more efficient carbon utilization and source-sink regulation in plants. So, we need to identify and characterize many components of sugar-response pathways for a better understanding of sugar responses. For this end, genes responding change of sugar status were screened using Arabidpsis cDNA arrays, and confirmed thirty-six genes to be regulated by sucrose supply in detached leaves by RNA blot analysis. Eleven of them encoding proteins for amino acid metabolism and carbohydrate metabolism were repressed by sugars. The remaining genes induced by sugar supply were for protein synthesis including ribosomal proteins and elongation factors. Among them, I focused on three hydrolase genes encoding putative $\beta$-galactosidase, $\beta$-xylosidase, and $\beta$-glucosidase that were transcriptionally induced in sugar starvation. Homology search indicated that these enzymes were involved in hydrolysis of cell wall polysaccharides. In addition to my results, recent transcriptome analysis suggested multiple genes for cell wall degradation were induced by sugar starvation. Thus, I hypothesized that enzyme for cell wall degradation were synthesized and secreted to hydrolyze cell wall polysaccharides producing carbon source under sugar-starved conditions. In fact, the enzymatic activities of these three enzymes increased in culture medium of Arabidopsis suspension cells under sugar starvation. The $\beta$-galactosidase encoded by At5g56870 was identified as a secretory protein in culture medium of suspension cells by mass spectrometry analysis. This protein was specifically detected under sugar-starved condition with a specific antibody. Induction of these genes was repressed in suspension cells grown with galactose, xylose and glucose as well as with sucrose. In planta, expression of the genes and protein accumulation were detected when photosynthesis was inhibited. Glycosyl hydrolase activity against galactan also increased during sugar starvation. Further, contents of cell wall polysaccharides especially pectin and hemicellulose were markedly decreased associating with sugar starvation in detached leaves. The amount of monosaccharide in pectin and hemicellulose in detached leaves decreased in response to sugar starvation. These results supported my idea that cell wall has one of function to supply carbon source in addition to determination of cell shape and physical support of plant bodies.

  • PDF

Effect of Mutation in α-COP, A Subunit of the COPI Vesicle, on Cell Wall Biogenesis in Fungi (COPI 소낭 구성체인 α-COP의 돌연변이가 균류 세포벽 합성에 미치는 영향)

  • Lee, Hwan-Hee;Park, Hee-Moon
    • The Korean Journal of Mycology
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • The cell wall is essential for the survival and osmotic integrity of fungal cells. It is the framework to which biologically active proteins such as cell adhesion molecules and hydrolytic enzymes are attached or within which they act. Recently it was shown that mutations in ${\alpha}-COP$, a subunit of COPI vesicle, is responsible for the thermo-sensitive osmo-fragile phenotype of fungi, such as Saccharomyces cerevisiae and Aspergillus nidulans, and suggested that ${\alpha}-COP$ may play a crucial role in translocation of protein(s) of the ${\beta}-1,3-gulcan$ synthase complex and cell wall proteins, thus may contribute to the maintenance of cell wall integrity. In this review, we summarized the relationship between the intra-cellular protein translocation machinery, especially the ${\alpha}-COP$ of COPI vesicle, and cell wall biogenesis in fungi. We also discussed potential use of secretory mutants in basic and applied research of the fungal cell walls.

Electron Microscopic Study on the Pineal Body of the Cat (고양이 송과체의 전자현미경적 연구)

  • Choi, Jae-Kwon;Bae, Choon-Sang;Oh, Chang-Seok;Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.22 no.1
    • /
    • pp.1-14
    • /
    • 1992
  • Parenchyma of the cat pineal body consisted of pinealocytes and glial cells. The pinealocyte, predominant cell type, was characterized by having large mitochondria with pale matrix, abundant polyribosomes, moderately-developed Golgi apparatus, centrioles and occasional cilia. The pinealocyte had one thick and long cytoplasmic process at the one pole of the cell, and slender and shorter processes at the other pole, and in addition occasional short processes from the cell body. These processes contained longitudinally arranged microtubules, and a few mitochondria. Thick processes teminated as bulgings either in the intercellular process-rich area, or in the perivascular border which was formed by glial cell processes. These endings of pinealocyte processes had many small vesicles, mitochondria, and occasional dense bodies. Glial cells with abundant filaments of intermediate type and clear cytoplasmic matrix were fibrous astrocyte. Perikarya of the astrocytes had small and dense mitochondria, moderately developed Golgi apparatus, dense bodies and variable amount of intermediate filaments. Glial cell processes run through the intercellular spaces among the pinealocyte processes. Glial cell of protoplasmic type had no or a few filaments, but it had well-organized rough endoplasmic reticulum, dense mitochondria, well developed Golgi apparatus and many dense granules. Intercellular canaliculi formed by adjacent pinealocytes and glial cell processes were often noted. Within the parenchyma, sympathetic and parasympathetic axons and their endings were noted. These endings were present mostly in the intercellular spaces without having membrane specialization, however, in rare instances, ending with small clear and dense cored vesicles, and large dense cored vesicles formed specialized synapse with a pinealocyte process. Within the perivascular spaces nerve fibers and endings, Schwann cells and pericyte were noted. In rare case pinealocyte process penetrated into the perivascular space through the interuptions of glial border. These results suggest that pinealocyte of the cat has less significance in secretory function and is rather neural type of cell.

  • PDF

Mantle Ultrastructure of the Spiny Top Shell, Batillus cornutus (Gastropoda: Turbinidae) (소라(Batillus cornutus) 외투막의 미세구조)

  • Jung, Gui-Kwon;Park, Jung-Jun;Jin, Young-Guk;Ju, Sun-Mi;Lee, Jae-Woo;Jung, Ae-Jin;Lee, Jung-Sick
    • The Korean Journal of Malacology
    • /
    • v.24 no.1
    • /
    • pp.41-50
    • /
    • 2008
  • The histochemical characteristics and ultrastructure of the mantle in the spiny top shell, Batillus cornutus were described using light and electron microscopy. The simple epidermal layer wrapped on the top and bottom of the centrally located connective tissue. And then the epidermal layer were divided into the outer epidermal layer near a shell and the inner epidermal layer closed to the visceral mass. The connective tissue layer was composed of the collagen fiber muscularfiber bundle and hemolymph sinus. Mucous cells in the apical mantle contained acid and neutral mucopolysaccaride, and acidic carboxylated mucopolysaccaride in the mid and marginal mantle. The mantle thickness, epidermal layer thickness and hemolymph sinus area displayed a trend of reduction from the marginal zone to the apical zone. From TEM observation, it was possible to distinguish epithelium, ciliated cell, absorptive cell and secretory cell in the epidermal layer. The epithelia were columnar and the nucleus was elliptical. The free surface were covered with microvilli. The lateral membranes of epithelium was con nected with neighboring cells by the zonular occludens, zonular adherens and membrane interdigitation. Ciliated cell on free surface had cilia and microvilli, and numerous mitochondria in the apical cytoplasm. In the epidermal layer, it observed 2 type cells having absorptive function. The absorptive cells were columnar in shape, and contained microvilli, pinocytotic vesicles, mitochondria and lysosomes of various electron density. Secretory cells can be divided into four types (A, B, C, D) depending on the cell shape and characteristics of secretory granules. These cells were unicellular glands and had similar characteristics to previously reported on the mantle of the gastropod and bivalves.

  • PDF

Human sebocyte-based assay system for the screening of compounds to lower the lipid synthesis in sebaceous gland

  • Mun, Yeun-Ja;Lee, Seung-Yon;Im, Sook-Jung;Ahn, Sung-Hun;Lee, Jason;Woo, Won-Hong
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.508-518
    • /
    • 2003
  • SZ95 cell is an immortalized human sebaceous gland cell line that shows the morphologic, phenotypic and functional characteristics of normal human sebocytes. Sebocytes may play crucial parts in the pathophysiologic processes and disorders of the pilosebaceous unit. The secretory activity of the sebaceous gland is remarkably species-specific and acne is an exclusively human disease. Thus, this SZ95 cells offer possibilities for investigations on the physiology of the sebaceous gland and its role in sebum-associated skin disease such as acne. In this study, we investigated the effects of 13-cis-retinoic acid (13-cis-RA) and spironolactone, frequently used as therapeutic agents of acne, on the lipid synthesis and proliferation of human sebocytes. Cell proliferation was determined by MTT assay and cytoplasmic lipid droplets was shown by Oil-red a staining. Total lipid levels were biochemically estimated by the sulfo-phospho-vanilline reagent. 13-cis-RA and spironolactone significantly inhibited proliferation and lipid levels in a dose-dependent manner. Combined treatment with testosterone and 13-cis-RA or spironolactone resulted in a lower total lipid levels than that with androgen alone. These observations indicate that 13-cis-RA and spironolactone are potent inhibitors of both cell proliferation and lipid synthesis in human sebocytes. We will provide experimental evidence that this human sebocyte cell line serves as an adequate tool for evaluating the anti-lipogenic activity of various compounds potentially useful for the bioactive cosmeceutical ingredients on acne skin, and studying the intracellular biochemical markers depending on the types of compounds from various sources.

  • PDF

Goosecoid Controls Neuroectoderm Specification via Dual Circuits of Direct Repression and Indirect Stimulation in Xenopus Embryos

  • Umair, Zobia;Kumar, Vijay;Goutam, Ravi Shankar;Kumar, Shiv;Lee, Unjoo;Kim, Jaebong
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.723-735
    • /
    • 2021
  • Spemann organizer is a center of dorsal mesoderm and itself retains the mesoderm character, but it has a stimulatory role for neighboring ectoderm cells in becoming neuroectoderm in gastrula embryos. Goosecoid (Gsc) overexpression in ventral region promotes secondary axis formation including neural tissues, but the role of gsc in neural specification could be indirect. We examined the neural inhibitory and stimulatory roles of gsc in the same cell and neighboring cells contexts. In the animal cap explant system, Gsc overexpression inhibited expression of neural specific genes including foxd4l1.1, zic3, ncam, and neurod. Genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) and promoter analysis of early neural genes of foxd4l1.1 and zic3 were performed to show that the neural inhibitory mode of gsc was direct. Site-directed mutagenesis and serially deleted construct studies of foxd4l1.1 promoter revealed that Gsc directly binds within the foxd4l1.1 promoter to repress its expression. Conjugation assay of animal cap explants was also performed to demonstrate an indirect neural stimulatory role for gsc. The genes for secretory molecules, Chordin and Noggin, were up-regulated in gsc injected cells with the neural fate only achieved in gsc uninjected neighboring cells. These experiments suggested that gsc regulates neuroectoderm formation negatively when expressed in the same cell and positively in neighboring cells via soluble factors. One is a direct suppressive circuit of neural genes in gsc expressing mesoderm cells and the other is an indirect stimulatory circuit for neurogenesis in neighboring ectoderm cells via secreted BMP antagonizers.

Comparative Studies on the Ultrastructures of Non-Ciliated and Ciliated Epithelial Cells in the Ductus Epididymidis of Apodemus agrarius coreae (등줄쥐 (Apodemus agrarius coreae)의 부고환관의 무섬모상피세포와 섬모상피세포의 미세구조에 대한 비교 연구)

  • Lee, Jung-Hun
    • Applied Microscopy
    • /
    • v.28 no.3
    • /
    • pp.345-362
    • /
    • 1998
  • In order to the comparative morphological study of the non-ciliated and ciliated epithelial cells, and to elucidate the process of degeneration of non-ciliated epithelial cell of the ductus epididymidis, Korean striped field mouse, Apodemus agrarius coreae was examined with light and transmission electron microscopes. The morphological characteristics of non-ciliated epithelial cell, the cell types of the caput epididymidis (Cp), corpus epididymidis (Cr) and cauda epididymidis (Cu) were long-columnar, short-columnar and short-cuboudal, respectively. The mitochondria and rough endoplasmic reticulum tended to be broken as they immigrated from Cp to the Cu. The Golgi acted vigorously at the Cp, but the Golgi was inactive in Cr and Cu. The secretory vesicles and lysosomes were increased gradually from Cp to the Cu. The process of degeneration of the non-ciliated epithelial cells observed in the Cp, Cr and Cu epididymidis. The increase of the non-ciliated epithelial cells, and its degeneration were observed more often from Cp to the Cu. The morphological characteristics of the ciliated epithelial cells, the cell types of the Cp, Cr and Cu were long-columnar, short-columnar and short-cuboudal, respecptively like the non-ciliated epithelial cells. The stereocilia was long and slender at the Cp and Cr, while Cu was very short. The pinocytotic vesicles and absorptive vesicles were increased from the Cp to the Cu. Numerous disintergrated products was existed at the Cr including the Cp, but Cu were not observed. A significant amount of lysosomes existed at the Cp and Cr epithelial cells, but they were not observed in Cu epithelial cells.

  • PDF