• Title/Summary/Keyword: Secondary winding

Search Result 213, Processing Time 0.023 seconds

Magnetic Saturation Effect of the Iron Core in Current Transformers Under Lightning Flow

  • Kim, Young Sun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.97-102
    • /
    • 2017
  • A current transformer (CT) is a type of sensor that consists of a combination of electric and magnetic circuits, and it measures large ac currents. When a large amount of current flows into the primary winding, the alternating magnetic flux in the iron core induces an electromotive force in the secondary winding. The characteristics of a CT are determined by the iron core design because the iron core is saturated above a certain magnetic flux density. In particular, when a large current, such as a current surge, is input into a CT, the iron core becomes saturated and the induced electromotive force in the secondary winding fluctuates severely. Under these conditions, the CT no longer functions as a sensor. In this study, the characteristics of the secondary winding were investigated using the time-difference finite element method when a current surge was provided as an input. The CT was modeled as a two-dimensional analysis object using constraints, and the saturation characteristics of the iron core were evaluated using the Newton-Rhapson method. The results of the calculation were compared with the experimental data. The results of this study will prove useful in the designs of the iron core and the windings of CTs.

A Study on the Optimal Design of Planar Flyback Transformers suitable for Small-size and Low-profile (소형화 및 슬림형에 적합한 평면 플라이백 변압기의 최적 설계에 관한 연구)

  • Na, Hae-Joong;Kim, Jong-Hae
    • Journal of IKEEE
    • /
    • v.24 no.3
    • /
    • pp.828-837
    • /
    • 2020
  • This paper presents the optimal design of planar flyback transformer suitable for small-size and low-profile of AC to DC adapter for 10W tablet. This paper also proposes the injection winding transformer of Hybrid and Drum types capable of the winding method of automatic type and the reduction of transformer size and leakage inductance(Lk) compared to the conventional mass-production flyback transformer with the winding method of manual type. In particular, the injection winding transformer of Drum type proposed in this paper is constructed in a horizontal laying of its transformer to solve the connection problem of copper plate injection winding on the secondary side of the one of Hybrid type. The primary and secondary windings of the injection winding transformer of Hybrid and Drum types used the conventional winding and the copper plate injection winding, respectively. For the injection winding transformer of Hybrid and Drum types proposed in this paper, the optimal design of planar flyback transformer suitable for small-size and low-profile was carried out using Maxwell 2D and 3D tool.

Design technology by structure of transformer (변압기의 형태에 따른 설계기술)

  • Lee O.K.;Song H.S.
    • Proceedings of the KIPE Conference
    • /
    • 2003.07a
    • /
    • pp.313-316
    • /
    • 2003
  • Investigated about topology of each component of transformer and material choice method and property in this paper. Component of transformer is bobin, winding, insulating paper, Varnish etc. And, experiment and investigated special quality by primary winding of transformer and composition of secondary winding. Investigated loss of transformer and EMI decrease method. Investigated method to select winding size that consider frequency.

  • PDF

Special quality analysis by component type choice of transformer (변압기의 구성요소 선정에 따른 특성고찰)

  • Lee, O.K.;Kim, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07c
    • /
    • pp.1601-1603
    • /
    • 2003
  • Investigated about topology of each component of transformer and material choice method and property in this paper. Component of transformer is bobin winding, insulating paper, Varnish etc. And experiment and investigated special quality by primary winding of transformer and composition of secondary winding. Investigated loss of transformer and EMI decrease method. Investigated method to select winding size that consider frequency.

  • PDF

Estimation of the Separate Primary and Secondary Leakage Inductances of a Y-Δ Transformer Using Least Squares Method

  • Kang, Yong-Cheol;Lee, Byung-Eun;Hwang, Tae-Keun
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.4
    • /
    • pp.538-544
    • /
    • 2010
  • This paper proposes an estimation algorithm for the separate primary and secondary leakage inductances of a three phase $Y-\Delta$ transformer using least squares method. The voltage equations from the primary and secondary windings are combined into a differential equation to estimate the separate primary and secondary leakage inductances in order to use the line current of the delta winding. Separate primary and secondary leakage inductances are obtained by applying least squares method to the differential equation. The performance of the proposed algorithm is validated under transient states, such as magnetic inrush and overexcitation, as well as in the steady state with various cut-off frequencies of low-pass filter. The proposed technique can accurately generate separate leakage inductances both in the steady and transient states.

Analysis on Quench Recovery Dependence of A Flux-Lock Type SFCL According to the Winding Directions (결선방향에 따른 자속구속형 전류제한기의 퀜치 회복 의존도 해석)

  • Jung, Su-Bok;Cho, Yong-Sun;Choi, Myoung-Ho;Choi, Hyo-Sang
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.1
    • /
    • pp.113-117
    • /
    • 2008
  • We investigated the current limiting and the recovery characteristics of a flux-lock type superconducting fault current limiter(SFCL) according to the winding directions. The flux-lock type SFCL consists of two coils. The primary coil was wound in parallel to the secondary coil through an Iron core, and the secondary coil was connected with the superconducting element in series. We have changed the winding direction of coils to compare the resistive type SFCL with the flux-lock type SFCL. The current limiting and the recovery characteristics were dependent on the winding direction. The quenching time in the additive polarity winding was faster than that of the subtractive polarity winding or the resistivity type. A consumed energy in a superconducting element was represented as $W= VIt=I^2Rt$. We found that there was a difference in the consumed energies in accordance with winding types because of differences in voltages imposed on a superconducting element in accordance with a winding direction.

Analysis of Transient Characteristics of SFCL using the Three-Phase Transformer and Power Switch (삼상 변압기와 전력용 스위치를 이용한 초전도 한류기의 과도특성 해석)

  • Jung, Byung-Ik;Choi, Hyo-Sang;Park, Jung-Il;Cho, Geum-Bae
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.11
    • /
    • pp.1743-1747
    • /
    • 2012
  • The research of superconducting fault current limiter (SFCL) for reduction of the fault current is actively underway in the worldwide. In this paper, we analyzed the characteristics of a SFCL using the transformer and superconducting elements combined mutually in accordance with the fault types. The structure of this SFCL was composed of the secondary and third windings of a transformer connected to the load and the superconducting element, respectively. The provided electric power flew into the load connected to the secondary winding of the transformer in normal state. On the other hand, when the fault occurred in power system, the fault current was limited by closing the line of third winding of the transformer. At this time, the effect of the fault was minimized by opening the fault line in secondary winding of a transformer in power system. The sensing of the fault state was performed by the current transformer(CT) and then turn-on and turn-off switching behavior of the secondary line in the transformer was performed by the silicon-controlled rectifier(SCR). As a result, the proposed SFCL limited the fault current within one-cycle efficiently. Also, the degradation of the superconducting element in the normal state was avoided.

The Research for a Structure of Current Limiter using a Phasic Similitude of Magnetic Circuit (자기회로의 위상학적 상사성을 이용한 전류제한기 구조에 관한 연구)

  • Ji, Geun-Yang;Min, Kyung-Il;Lee, Su-Won;Jang, Bong-Hwan;Moon, Young-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2128-2135
    • /
    • 2009
  • In this paper, current limiter using a magnetic switching which is based on magnetic flux change in the case of fault is proposed. This current limiter consists of iron-core and three parts of coils. One is the primary coil connected to the power system. Another is the secondary coil wound to the opposite direction of the primary coil's winding. The other is the secondary of the secondary coil which is a movable copper plate winding and located below the secondary coil. In the normal state, the magnetic flux produced in the primary and secondary coils flows to the opposite directions each other and becomes to be canceled out. Therefore the voltages induced between the coils are zero. In the case of a fault, at the moment of a fault occurrence recognition, the switch connected to a secondary coil is opened and the secondary of the secondary coil is pulled out to the outside of the iron-core. Then, magnetic flux becomes to flow through the iron-core. Accordingly, the voltage is induced between the both ends of the primary coil and makes the current reduced. Therefore it is possible to cut off the circuit breaker easily with the proposed current limiter. This paper analyzes the current limiting effects and the detailed results are given.

Dynamic Behavior Analysis of Pole Transformer Primary by Secondary Surge (저압측 서지에 의한 주상변압기 고압권선 동특성 해석)

  • Jung, Jong-Wook;Song, Il-Keun;Kim, Sang-Joon;Jang, Duck-Geun;Kwak, Hee-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1745-1747
    • /
    • 2002
  • This paper describes the effect of secondary surges entering low voltage side on the primary winding of pole transformers. After having connected the secondary winding by 4 different methods, surge voltages were applied to the low voltage side, and voltage waveforms were measured at a surge applied point and a high voltage bushing terminal. The measured voltages were compared by the waveform, magnitude and damping characteristics with each connection. As a result, the voltage waveforms induced by the secondary surges were different one another with each connection, especially, the conventional connecting method for 2 voltage sources was far different from the present method supplying only 1 voltage source in shape of the voltage waveform.

  • PDF

Current Limiting Characteristics of Flux-lock Type Superconducting Fault Current Limiter Using YBCO Films by Serial and Parallel Combinations (자속구속형 한류기의 직병렬조합에 따른 전류제한특성)

  • Park, Hyoung-Min;Cho, Yong-Sun;Lee, Ju-Hyoung;Jung, Byung-Ik;Choi, Hyo-Sang;Choi, Myong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.87-88
    • /
    • 2007
  • We investigated the current limiting characteristics of flux-lock type superconducting fault current limiter using YBCO films University, Gwangju health college. The flux-lock type SFCL consisted of the transformer with a primary winding and a secondary winding connected in parallel, and the superconducting element was connected with secondary winding in series or parallel. Serial and parallel connections of superconducting elements are necessary for the increase of voltage and current capacities when we intend to apply the flux-lock type SFCL.

  • PDF