• 제목/요약/키워드: Secondary vortex

검색결과 185건 처리시간 0.024초

날개-평판 접합부에서의 날개 앞전 형상 최적화를 통한 유동특성 향상 (Improvement of the Flow Characteristics by Optimizing the Leading-Edge Shape Around Airfoil/Flat-Plate Junction)

  • 조종재;김귀순
    • 한국추진공학회지
    • /
    • 제13권6호
    • /
    • pp.24-33
    • /
    • 2009
  • 본 논문에서는 2차유동손실을 일으키는 주요 요인 중의 하나인 말굽와류의 강도를 감쇄시키기 위해 일반적인 날개 앞전의 형상을 결정하는 변수를 정하고 이를 최적화 하였다. 근사최적화 기법을 이용 최적화를 수행하였다. 유동해석과 최적화 프로그램으로는 $FLUENT^{TM}$$iSIGHT^{TM}$를 이용하였다. 최적화 수행결과, 기준 모델의 경우에 비해 최적화된 모델의 경우 전압력 계수가 약 9.79% 감소하였다.

핵연료집합체에서의 대형이차와류 혼합날개의 난류생성 특성에 관한 연구 (A Study of Turbulence Generation Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1819-1824
    • /
    • 2004
  • The common method to improve heat transfer in Nuclear fuel rod bundle is install a mixing vane in space grid. The previous split mixing vane is guides cooling water to swirl flow in sub-channel of fuel assembly. But, this swirl flow decade rapidly after mixing vane and the effect of enhancing the heat transfer vanish behind this short region. The large scale secondary vortex flow was generated by rearranging the inclined angle direction of mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid and the streamwise vorticity in subchannel with LSVF mixing vane sustain two times more than that in subchannel with split mixing vane. The turbulent kinetic energy and the Reynolds stresses generated by the mixing vanes have nearly same scales but maintain twice more than previous type.

  • PDF

이차흐름에 의한 스팬방향의 믹싱효과를 고려한 준3차원 계산법을 이용한 사류송풍기 내부흐름의 해석 (An Analysis of Internal Flow of Diagonal Flow Blower with Quasi-Three-Dimensional Calculation Method Considering the Spanwise Mixing due to Secondary Flow)

  • 박상록;김영중;김태환
    • 태양에너지
    • /
    • 제19권4호
    • /
    • pp.21-31
    • /
    • 1999
  • This paper presents a quasi-three-dimensional calculation method considered a spanwise mixing effect in a diagonal flow impeller. The effect of this spanwise mixing caused by spanwise distribution of blade loading is evaluated by a secondary flow theory. In order to verify the validity of this method, it is applied to the analysis of a diagonal flow fan designed under a vortex type of constant circumferential velocity and that of a free vortex. The comparison of the calculated result with experimental data shows a good agreement except the regions near the casing where the flow field is affected by the tip leakage flow.

  • PDF

Three-Dimensional Flow Simulations of End-to-Side Vascular Anastomoses : Flow Dynamic Aspect on Preferential Development of Intimal Hyperplasia or Thrombosis

  • Kim, Young H.;Krishnan B.Chandran
    • 대한의용생체공학회:의공학회지
    • /
    • 제15권3호
    • /
    • pp.253-258
    • /
    • 1994
  • Three-dimensional steady and pulsatile flows in an end-to-side anastomosis were investigated using a finite difference method in order to understand the flow dynamics in the preferential development of distal anastomotic intimal hyperplasia or thrombosis. Steady flow results revealed that a double helical vortex was formed in the host artery and flow recirculations near toe find heel regions were restricted due to the secondary flow. Oscillating wall shear stress with significant secondary flow might be flow dynamic reason of developing intimal hyperplasia or thrombosis near the anastomotic region.

  • PDF

채널 유동 내에서 헤어핀 보텍스 패킷의 형성 과정 (Process of Hairpin Vortex Packet Generation in Channel Flows)

  • 김경연
    • 대한기계학회논문집B
    • /
    • 제36권8호
    • /
    • pp.839-847
    • /
    • 2012
  • 벽면 난류의 항력과 밀접한 관련이 있는 유동구조인 헤어핀 보텍스 패킷의 형성 과정을 파악하기 위해 $Re_{\tau}$ = 180, 395, 590 의 채널유동에서 보텍스의 발달 과정에 대한 전산해석을 수행하였다. 초기 보텍스는 각 레이놀즈 수에 대한 직접수치모사를 수행하여 버퍼층에서 발생하는 Q2 이벤트에 대한 조건부 평균 유동장으로 부과하였다. 초기 보텍스의 발달과정을 시공간적으로 조사하여 ${\Omega}$ 모양의 보텍스의 형성 및 2 차 헤어핀 보텍스의 형성 과정의 시간 척도는 벽단위에 의존함을 확인하였다. 또한, 초기 보텍스가 채널 중심까지 성장한 시점에서는 세 레이놀즈 수 경우 모두 패킷의 경사각이 대략 $12^{\circ}{\sim}14^{\circ}$로 유사하였다. 마지막으로 두 개의 인접한 헤어핀 보텍스가 보텍스 패킷으로 발달하는 경우에 대한 전산해석을 수행하여 보텍스 패킷의 상호작용을 조사하였다.

터빈 캐스케이드 입구경계층 두께와 경계층 펜스 효과에 대한 실험적 연구 (Experimental Study on Effects of Inlet Boundary Layer Thickness and Boundary Layer Fence in a Turbine Cascade)

  • 전용민;정진택
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.853-858
    • /
    • 2000
  • The working fluid from the combustor to the turbine stage of a gas turbine makes various boundary layer thickness. Since the inlet boundary layer thickness is one of the important factors that affect the turbine efficiency. It is necessary to investigate secondary flow and loss with various boundary layer thickness conditions. In the present study, the effect of various inlet boundary layer thickness on secondary flow and loss and the proper height of the boundary layer fences for various boundary layer thickness were investigated. Measurements of secondary flow velocity and total pressure loss within and downstream of the passage were taken under 5 boundary layer thickness conditions, 16, 36, 52, 69, 110mm. It was found that total pressure loss and secondary flow areas were increased with increase of thickness but they were maintained almost at the same position. At the fellowing research about the boundary layer fences, 1/6, 1/3, 1/2 of each inlet boundary layer thickness and 12mm were used as the fence heights. As a result, it was observed that the proper height of the fences was generally constant since the passage vortex remained almost at the same position. Therefore once the geometry of a cascade is decided, the location of the Passage vortex and the proper fence height are appeared to be determined at the same time. When the inlet boundary layer thickness is relatively small, the loss caused by the proper fence becomes bigger than endwall loss so that it dominates secondary loss. In these cases the proper fence hight is decided not by the cascade geometry but by the inlet boundary layer thickness as previous investigations.

  • PDF

실린더 내부 유동장에 대한 흡입 밸브의 편심 효과에 관한 수치적 연구 (A numerical study of the eccentricity effect of the intake valve on the in-cylinder flow field)

  • 양희천;최영기;고상근;허선무
    • 오토저널
    • /
    • 제14권4호
    • /
    • pp.39-49
    • /
    • 1992
  • Three dimensional numerical calculation carried out to investigate the eccentricity effect of intake valve on the in-cylinder flow fields for the intake stroke and the compression stroke. During the intake stroke, a corner vortex in the vicinity of the valve exit interacted strongly with a toroidal vortex in the case of axisymmetric valve. But a weak interaction between the corner vortex and the toroidal vortex occurred due to the eccentricity of the valve in the narrow region between valve and cylinder wall in the case of offset valve. During the compression stroke, it was found that a solid body rotation was maintained in the radial-circumferential plane in the case of axisymmetric valve. But a weak secondary vortex was formed in the radial-circumferntial plane in the case of offset valve, because of the interaction between swirl flows and inward flows towards cylinder axis. The calculated turbulence intensity presented a similar trend with the experiental results but, in spite of using the modified k-.epsilon. model, it was found that the qualitative difference between the numerical results and experimental results was large in the region where the velocity gradient is substantial.

  • PDF

입자영상유속계를 이용한 자항상태 모형선의 프로펠러 후류 계측 (Propeller Wake Measurement of a Model Ship in Self Propulsion Condition using Towed Underwater PIV)

  • 서정화;유극상;임태구;설동명;한범우;이신형
    • 대한조선학회논문집
    • /
    • 제51권2호
    • /
    • pp.171-177
    • /
    • 2014
  • A two-dimensional particle image velocimetry (2D PIV) system in a towing tank is employed to measure a wake field of a very large crude oil carrier model with rotating propeller in self propulsion condition, to identify characteristics of wake of a propeller working behind a ship. Phase-averaged and time-averaged flow fields are measured for a horizontal plane. Scale ratio of the model ship is 1/100 and Froude number is 0.142. By phase-averaging technique, trajectories of tip vortex and hub vortex are identified and characteristic secondary vortex distribution is observed in the hub vortex region. Propeller wake on the starboard side is more accelerated than that on the port side, due to the difference of inflow of propeller blades. The hub vortex trajectory tends to face the port side. With the fluctuation part of the phase-averaged velocity field, turbulent kinetic energy (TKE) is also derived. In the center of tip vortex and hub vortex region, high TKE concentration is observed. In addition, a time-averaged vector field is also measured and compared with phase-averaged vector field.

THREE-DIMENSIONAL FLOW PHENOMENA IN A WIRE-WRAPPED 37-PIN FUEL BUNDLE FOR SFR

  • JEONG, JAE-HO;YOO, JIN;LEE, KWI-LIM;HA, KWI-SEOK
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.523-533
    • /
    • 2015
  • Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

핵연료집합체에서의 대형이차와류 혼합날개의 열전달 특성에 관한 연구 (A Study of Beat Transfer Characteristics of Large Scale Vortex Flow Mixing Vane of Nuclear Fuel Rod Bundle)

  • 안정수;최영돈
    • 대한기계학회논문집B
    • /
    • 제30권1호
    • /
    • pp.24-31
    • /
    • 2006
  • Mixing vanes have been installed in the space grid of nuclear fuel rod bundle to improve turbulent heat transfer. Split mixing vanes induce the vortex flow in the cooling water to swirl in sub-channel of fuel assembly. But, The swirling flow decays rapidly so that the heat transfer enhancing effect limited to short length after the mixing vane. In thi present study, the large scale vortex flow(LSVF) is generated by rearranging the mixing vanes to the coordinated directions. This LSVF mixing vanes generate the most strong secondary flow vortices which maintain about 35 $D_H$ after the spacer grid. The streamwise vorticity generated by LSVF sustain two times more than that split mixing vane. Heat transfer in the rod bundle occurs greatly at the same direction to cross flow, and maximum temperature at the surface of bundle drops about 1.5K