DOI QR코드

DOI QR Code

채널 유동 내에서 헤어핀 보텍스 패킷의 형성 과정

Process of Hairpin Vortex Packet Generation in Channel Flows

  • 김경연 (한밭대학교 기계공학과)
  • 투고 : 2012.03.05
  • 심사 : 2012.05.29
  • 발행 : 2012.08.01

초록

벽면 난류의 항력과 밀접한 관련이 있는 유동구조인 헤어핀 보텍스 패킷의 형성 과정을 파악하기 위해 $Re_{\tau}$ = 180, 395, 590 의 채널유동에서 보텍스의 발달 과정에 대한 전산해석을 수행하였다. 초기 보텍스는 각 레이놀즈 수에 대한 직접수치모사를 수행하여 버퍼층에서 발생하는 Q2 이벤트에 대한 조건부 평균 유동장으로 부과하였다. 초기 보텍스의 발달과정을 시공간적으로 조사하여 ${\Omega}$ 모양의 보텍스의 형성 및 2 차 헤어핀 보텍스의 형성 과정의 시간 척도는 벽단위에 의존함을 확인하였다. 또한, 초기 보텍스가 채널 중심까지 성장한 시점에서는 세 레이놀즈 수 경우 모두 패킷의 경사각이 대략 $12^{\circ}{\sim}14^{\circ}$로 유사하였다. 마지막으로 두 개의 인접한 헤어핀 보텍스가 보텍스 패킷으로 발달하는 경우에 대한 전산해석을 수행하여 보텍스 패킷의 상호작용을 조사하였다.

Numerical simulations for channel flows with $Re_{\tau}$ = 180, 395 and 590 have been performed to investigate the hairpin packet formation process in wall-bounded turbulent flows. Using direct numerical simulation databases, the initial flow fields are given by the conditionally averaged flow field with the second quadrant event specified at the buffer layer. By tracking the initial vortex development, the change in the initial vortex to an ${\Omega}$-shaped vortex and th generation of a secondary hairpin vortex were found to occur with time scales based on the wall units. In addition, at the time when the initial vortex has grown to the channel center, the inclination angle of the hairpin vortex packet is approximately $12{\sim}14^{\circ}$, which is similar for all three Reynolds numbers. Finally, numerical simulations of the evolution of two adjacent hairpin vortices have been performed to examine the interaction between the adjacent vortex packets.

키워드

참고문헌

  1. Robinson, S.K., 1991, "Coherent Motions in the Turbulent Boundary Layer," Ann. Rev. Fluid Mech., Vol. 23, No. 1, pp. 601-639. https://doi.org/10.1146/annurev.fl.23.010191.003125
  2. Falco, R., 1977, "Coherent Motions in the Outer Region of Turbulent Boundary Layers," Phys. Fluids, Vol. 20, pp. S124. https://doi.org/10.1063/1.861721
  3. Head, M. and Bandyopadhyay, P., 1981, "New Aspects of Turbulent Boundary-Layer Structure," J. Fluid Mech, Vol. 107, pp. 297-338. https://doi.org/10.1017/S0022112081001791
  4. Adrian, R.J., 2007, "Hairpin Vortex Organization in Wall Turbulence," Phys. Fluids, Vol. 19, pp. 041301. https://doi.org/10.1063/1.2717527
  5. Adrian, R.J., Meinhart, C.D. and Tomkins, C.D., 2000, "Vortex Organization in the Outer Region of the Turbulent Boundary Layer," J. Fluid Mech., Vol. 422, pp. 1-54. https://doi.org/10.1017/S0022112000001580
  6. Tomkins, C.D. and Adrian, R.J., 2003, "Spanwise Structure and Scale Growth in Turbulent Boundary Layers," J. Fluid Mech., Vol. 490, pp. 37-74. https://doi.org/10.1017/S0022112003005251
  7. Ganapathisubramani, B., Longmire, E.K. and Marusic, I., 2003, "Characteristics of Vortex Packets in Turbulent Boundary Layers," J. Fluid Mech., Vol. 478, pp. 35-46.
  8. Zhou, J., Adrian, R.J., Balachandar, S. and Kendall, T.M., 1999, "Mechanisms for Generating Coherent Packets of Hairpin Vortices in Channel Flow," J. Fluid Mech., Vol. 387, pp. 353-396. https://doi.org/10.1017/S002211209900467X
  9. Kim, K., Sung, H.J. and Adrian, R.J., 2008, "Effects of Background Noise on Generating Coherent Packets of Hairpin Vortices," Phys. Fluids, Vol. 20, pp. 105107. https://doi.org/10.1063/1.3001797
  10. Kim, K., 2012, "Reynolds Shear Stress Distribution in Turbulent Channel Flows," Trans. of the KSME (B), Vol. 36, No. 8, pp. 829-837,
  11. Adrian, R.J., 1994, "Stochastic Estimation of Conditional Structure: a Review," Applied Scientific Research, Vol. 53, No. 3, pp. 291-303. https://doi.org/10.1007/BF00849106
  12. Chakraborty, P., Balachandar, S. and Adrian, R.J., 2005, "On the Relationships Between Local Vortex Identification Schemes," J. Fluid Mech., Vol. 535, pp. 189-214. https://doi.org/10.1017/S0022112005004726
  13. Adrian, R., Balachandar, S. and Lin, Z., 2001, "Spanwise Growth of Vortex Structure in Wall Turbulence," J. Mech. Sci. Tech., Vol. 15, No. 12, pp. 1741-1749.