• Title/Summary/Keyword: Secondary voltage control

Search Result 185, Processing Time 0.029 seconds

Secondary Indirect Constant Voltage Control Technique for Hybrid Solid State Transformer using Primary Side Information (하이브리드 반도체 변압기의 1차측 정보를 이용한 2차측 간접 정전압 제어 기법)

  • Lee, Taeyeong;Yun, Chun-Gi;Cho, Younghoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.5
    • /
    • pp.420-423
    • /
    • 2020
  • This study proposes an indirect constant voltage control algorithm for hybrid solid-state transformers (HSSTs) by using primary side information. Considering the structure of HSSTs, measuring voltage and current information on the primary side of a transformer is necessary to control the converter and inverter of the power converter. The secondary side output voltage is measured to apply the conventional secondary side constant voltage control algorithm, and thus, the digital control board requires the same rated insulation voltage as that of the transformer. To solve this problem, the secondary voltage of the transformer obtained from the tap voltage is used. Moreover, output voltage decreases as load increases because the proposed indirect constant voltage control scheme does not consider the cable impedance between the secondary output terminal and the load. This study also proposes a technique for compensating the secondary output voltage by using the primary current of the transformer and the resistance value of the cable. An experiment is conducted using a scale-down HSST prototype consisting of a 660 V/220 V tap transformer. The problem of the proposed indirect constant voltage control strategy and the improvement effect due to the application of the compensation method are compared using the derived experimental results.

A Determination of The Voltage Control Area To KEPCO system (우리나라 계통의 전압 제어 지역 설정)

  • Baik Seung Do;Lee Byong Jun
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.33-35
    • /
    • 2004
  • The secondary voltage control is the method the pilot bus controls the voltage of the voltage control area sufficiently uncoupled form its neighbours within a area to k slightly influenced by the actions carried out in the other areas. This paper presents the comparison of three methods which determines the voltage control area for the secondary voltage control in power system. Additionally, this paper selects the fitted thing of three methods determining the voltage control area, VSSA, and using it applies the procedure determining the voltage control area to KEPCO system.

  • PDF

Hybrid Secondary Voltage Control combined with Large-Scale Wind Farms and Synchronous Generators

  • Kim, Jihun;Lee, Hwanik;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.399-405
    • /
    • 2014
  • For stable integration of large-scale wind farms, integration standards (Grid codes) have been proposed by the system operator. In particular, voltage control of large-scale wind farms is gradually becoming important because of the increasing size of individual wind farms. Among the various voltage control methods, Secondary Voltage Control (SVC) is a method that can control the reactive power reserve of a control area uniformly. This paper proposes hybrid SVC when a large-scale wind farm is integrated into the power grid. Using SVC, the burden of a wind turbine converter for generating reactive power can be reduced. To prove the effectiveness of the proposed strategy, a simulation study is carried out for the Jeju system. The proposed strategy can improve the voltage conditions and reactive power reserve with this hybrid SVC.

Secondary Voltage Control for Reactive Power Sharing in an Islanded Microgrid

  • Guo, Qian;Wu, Hongyan;Lin, Liaoyuan;Bai, Zhihong;Ma, Hao
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.329-339
    • /
    • 2016
  • Owing to mismatched feeder impedances in an islanded microgrid, the conventional droop control method typically results in errors in reactive power sharing among distributed generation (DG) units. In this study, an improved droop control strategy based on secondary voltage control is proposed to enhance the reactive power sharing accuracy in an islanded microgrid. In a DG local controller, an integral term is introduced into the voltage droop function, in which the voltage compensation signal from the secondary voltage control is utilized as the common reactive power reference for each DG unit. Therefore, accurate reactive power sharing can be realized without any power information exchange among DG units or between DG units and the central controller. Meanwhile, the voltage deviation in the microgrid common bus is removed. Communication in the proposed strategy is simple to implement because the information of the voltage compensation signal is broadcasted from the central controller to each DG unit. The reactive power sharing accuracy is also not sensitive to time-delay mismatch in the communication channels. Simulation and experimental results are provided to validate the effectiveness of the proposed method.

A new hybrid control scheme for reduction of secondary diode voltage stresses Based on interleaved PFC Asymmetrical Half Bridge Topology (Asymmetrical 반브리지 컨버터의 이차측 다이오드 전압스트레스저감을 위한 새로운 하이브리드 제어기법)

  • Park, Nam-Ju;Lee, Dong-Yun;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1416-1418
    • /
    • 2005
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter(AHBC) with low voltage stresses of the diodes and interleaved PFC(power factor correction). The proposed new control scheme can observe variation of secondary diodes voltage stresses by variation of duty ratio and then decide the control portions which are asymmetrical control and PFM(Pulse Frequency Modulation). Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes, low conduction loss according to the low voltage drop and wide zvs range by load variation. Through simulation results, the validity of the proposed control scheme is demonstrated.

  • PDF

Digital Control of Secondary Active Clamp Phase-Shifted Full-Bridge Converters

  • Che, Yanbo;Ma, Yage;Ge, Shaoyun;Zhu, Dong
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.421-431
    • /
    • 2014
  • A DSP-based self-adaptive proportional-integral (PI) controller to control a DC-DC converter is proposed in this paper. The full-bridge topology is adopted here to obtain higher power output capability and higher conversion efficiency. The converter adopts the zero-voltage-switching (ZVS) technique to reduce the conduction losses. A parallel secondary active clamp circuit is added to deal with the voltage overshoot and ringing effect on the transformer's secondary side. A self-adaptive PI controller is proposed to replace the traditional PI controller. Moreover, the designed converter adopts the constant-current and constant-voltage (CC-CV) output control strategy. The secondary active clamp mechanism is discussed in detail. The effectiveness of the proposed converter was experimentally verified by an IGBT-based 10kW prototype.

Distributed Secondary Voltage Control of Islanded Microgrids with Event-Triggered Scheme

  • Guo, Qian;Cai, Hui;Wang, Ying;Chen, Weimin
    • Journal of Power Electronics
    • /
    • v.17 no.6
    • /
    • pp.1650-1657
    • /
    • 2017
  • In this study, the distributed secondary voltage control of islanded microgrids with multi-agent consensus algorithm is investigated. As an alternative to a time-triggered approach, an event-triggered scheme is proposed to reduce the communication load among inverter-based distributed generators (DGs). The proposed aperiodic control scheme reduced unnecessary utilization of limited network bandwidth without degrading control performance. By properly establishing a distributed triggering condition in DG local controller, each inverter is only required to send voltage information when its own event occurs. The compensation of voltage amplitude deviation can be realized, and redundant data exchange related to fixed high sampling rate can be avoided. Therefore, an efficient use of communication infrastructure can be realized, particularly when the system is operating in steady state. The effectiveness of the proposed scheme is verified by simulations on a microgrid test system.

Experimental Investigation on Induced Voltage of the Secondary Conductors in Linear Induction Motor with Cage-type Secondary Fed by PWM Inverter (PWM 인버터로 구동되는 농형 선형유도전동기의 2차측 도체 전압 특성)

  • Kim, Kyung-Min;Park, Seung-Chan
    • Proceedings of the KIEE Conference
    • /
    • 2002.04a
    • /
    • pp.21-24
    • /
    • 2002
  • In this paper, induced voltages of the secondary conductors of a linear induction motor(LIM) with cage-type secondary are measured and analyzed when the LIM is fed by PWM inverter. The attenuation constant of the induced voltage of the secondary conductors near entry and exit zones of the the travelling magnetic field are determined from the experiment results.

  • PDF

A Determination of The Voltage Control Area For The Secondary Voltage Control (2차 전압 제어를 위한 전압 제어 지역의 결정)

  • Lee, Suck-Chang;Song, Hwa-Chang;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07a
    • /
    • pp.106-108
    • /
    • 2001
  • This paper presents the comparison of three methods which determines the voltage control area for the secondary voltage control in power system. Each secondary control area is sufficiently uncouped from its neighbours for the controls within a area to be slightly influenced by the actions carried out in the other areas. Results obtained using a modifed 48bus test system are presented illustrating the applicability of the approach.

  • PDF

A Hybrid Control Scheme of Asymmetrical Half Bridge Converter with Low Stresses of the Diodes (낮은 다이오드 스트레스를 갖는 비대칭 하프 브리지 컨버터의 하이브리드 제어기법)

  • 조창규;이동윤;박남주;김경환;현동석
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.1
    • /
    • pp.55-62
    • /
    • 2004
  • This paper presents a new hybrid control method of asymmetrical half-bridge converter (AHBC) with low voltage stresses of the diodes. The proposed new control scheme can observe variation of secondary diode voltage stresses by using feedback of the input voltage and then decide the control portions, which are symmetrical control and asymmetrical control. Therefore, the proposed control scheme has many advantages such as a low rated voltage of the secondary diodes and low conduction loss according to the low voltage drop. The principle of the proposed control scheme is explained in detail and its validity is verifiedthrough simulated and experimental results