• Title/Summary/Keyword: Secondary structure of proteins

Search Result 98, Processing Time 0.024 seconds

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

Clustered Segment Index for Efficient Approximate Searching on the Secondary Structure of Protein Sequences (클러스터 세그먼트 인덱스를 이용한 단백질 이차 구조의 효율적인 유사 검색)

  • Seo Min-Koo;Park Sang-Hyun;Won Jung-Im
    • Journal of KIISE:Databases
    • /
    • v.33 no.3
    • /
    • pp.251-260
    • /
    • 2006
  • Homology searching on the primary structure (i.e., amino acid arrangement) of protein sequences is an essential part in predicting the functions and evolutionary histories of proteins. However, proteins distant in an evolutionary history do not conserve amino acid residue arrangements, while preserving their structures. Therefore, homology searching on proteins' secondary structure is quite important in finding out distant homology. In this manuscript, we propose an indexing scheme for efficient approximate searching on the secondary structure of protein sequences which can be easily implemented in RDBMS. Exploiting the concept of clustering and lookahead, the proposed indexing scheme processes three types of secondary structure queries (i.e., exact match, range match, and wildcard match) very quickly. To evaluate the performance of the proposed method, we conducted extensive experiments using a set of actual protein sequences. CSI was proved to be faster than the existing indexing methods up to 6.3 times in exact match, 3.3 times in range match, and 1.5 times in wildcard match, respectively.

Backbone NMR Assignments and Secondary Structure Determination of a Cupin-family Protein YaiE from Escherichia coli

  • Lee, Sung-Hee;Sim, Dae-Won;Kim, Eun-Hee;Kim, Ji-Hun;Won, Hyung-Sik
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.2
    • /
    • pp.50-54
    • /
    • 2017
  • Cupin-superfamily proteins represent the most functionally diverse groups of proteins and include a huge number of functionally uncharacterized proteins. Recently, YaiE, a cupin protein from Escherichia coli has been suggested to be involved in a novel activity of pyrimidine/purine nucleoside phosphorylase (PPNP). In the present study, we achieved a complete backbone NMR assignments of YaiE, by a series of heteronuclear multidimensional NMR experiments on its [$^{13}C/^{15}N$]-enriched sample. Subsequently, secondary structure analysis using the assigned chemical shift values identified 10 obvious ${\beta}-strands$ and a tentative $3_{10}-helix$. Taken all together, the results constitute the first structural characterization of a putative PPNP cupin protein.

In silico detection and characterization of novel virulence proteins of the emerging poultry pathogen Gallibacterium anatis

  • L. G. T. G. Rajapaksha;C. W. R. Gunasekara;P. S. de Alwis
    • Genomics & Informatics
    • /
    • v.20 no.4
    • /
    • pp.41.1-41.9
    • /
    • 2022
  • The pathogen Gallibacterium anatis has caused heavy economic losses for commercial poultry farms around the world. However, despite its importance, the functions of its hypothetical proteins (HPs) have been poorly characterized. The present study analyzed the functions and structures of HPs obtained from Gallibacterium anatis (NCTC11413) using various bioinformatics tools. Initially, all the functions of HPs were predicted using the VICMpred tool, and the physicochemical properties of the identified virulence proteins were then analyzed using Expasy's ProtParam server. A virulence protein (WP_013745346.1) that can act as a potential drug target was further analyzed for its secondary structure, followed by homology modeling and three-dimensional (3D) structure determination using the Swiss-Model and Phyre2 servers. The quality assessment and validation of the 3D model were conducted using ERRAT, Verify3D, and PROCHECK programs. The functional and phylogenetic analysis was conducted using ProFunc, STRING, KEGG servers, and MEGA software. The bioinformatics analysis revealed 201 HPs related to cellular processes (n = 119), metabolism (n = 61), virulence (n = 11), and information/storage molecules (n = 10). Among the virulence proteins, three were detected as drug targets and six as vaccine targets. The characterized virulence protein WP_013745346.1 is proven to be stable, a drug target, and an enzyme related to the citrate cycle in the present pathogen. This enzyme was also found to facilitate other metabolic pathways, the biosynthesis of secondary metabolites, and the biosynthesis of amino acids.

Involvement of lymphoid inducer cells in the development of secondary and tertiary lymphoid structure

  • Evans, Isabel;Kim, Mi-Yeon
    • BMB Reports
    • /
    • v.42 no.4
    • /
    • pp.189-193
    • /
    • 2009
  • During development lymphoid tissue inducer (LTi) cells are the first hematopoietic cells to enter the secondary lymphoid anlagen and induce lymphoid tissue neogenesis. LTi cells induce lymphoid tissue neogensis by expressing a wide range of proteins that are associated with lymphoid organogenesis. Among these proteins, membrane-bound lymphotoxin (LT) $\alpha1\beta2$ has been identified as a critical component to this process. LT$\alpha1\beta2$ interacts with the LT$\beta$-receptor on stromal cells and this interaction induces up-regulation of adhesion molecules and production of chemokines that are necessary for the attraction, retention and organization of other cell types. Constitutive expression of LT$\alpha1\beta2$ in adult LTi cells can result in the formation of a lymphoid-like structure called tertiary lymphoid tissue. In this review, we summarize the function of fetal and adult LTi cells and their involvement in secondary and tertiary lymphoid tissue development in murine models.

AN IMPROVED ALGORITHM FOR RNA SECONDARY STRUCTURE PREDICTION

  • Namsrai Oyun-Erdene;Jung Kwang Su;Kim Sunshin;Ryu Keun Ho
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.280-282
    • /
    • 2005
  • A ribonucleic acid (RNA) is one of the two types of nucleic acids found in living organisms. An RNA molecule represents a long chain of monomers called nucleotides. The sequence of nucleotides of an RNA molecule constitutes its primary structure, and the pattern of pairing between nucleotides determines the secondary structure of an RNA. Non-coding RNA genes produce transcripts that exert their function without ever producing proteins. Predicting the secondary structure of non-coding RNAs is very important for understanding their functions. We focus on Nussinov's algorithm as useful techniques for predicting RNA secondary structures. We introduce a new traceback matrix and scoring table to improve above algorithm. And the improved algorithm provides better levels of performance than the originals.

  • PDF

Enhanced Chemical Shift Analysis for Secondary Structure prediction of protein

  • Kim, Won-Je;Rhee, Jin-Kyu;Yi, Jong-Jae;Lee, Bong-Jin;Son, Woo Sung
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.18 no.1
    • /
    • pp.36-40
    • /
    • 2014
  • Predicting secondary structure of protein through assigned backbone chemical shifts has been used widely because of its convenience and flexibility. In spite of its usefulness, chemical shift based analysis has some defects including isotopic shifts and solvent interaction. Here, it is shown that corrected chemical shift analysis for secondary structure of protein. It is included chemical shift correction through consideration of deuterium isotopic effect and calculate chemical shift index using probability-based methods. Enhanced method was applied successfully to one of the proteins from Mycobacterium tuberculosis. It is suggested that correction of chemical shift analysis could increase accuracy of secondary structure prediction of protein and small molecule in solution.

Effect of γ-Irradiation on the Molecular Properties of Bovine Serum Albumin and β-Lcatoglobulin

  • Cho, Yong-Sik;Song, Kyung-Bin
    • BMB Reports
    • /
    • v.33 no.2
    • /
    • pp.133-137
    • /
    • 2000
  • To elucidate the effect of oxygen radicals on the molecular properties of proteins, the secondary and tertiary structure and molecular weight size of BSA and ${\beta}$-lactoglobulin were examined after irradiation of proteins at various doses. Gamma-irradiation of protein solutions caused the disruption of the ordered structure of protein molecules as well as degradation, cross-linking, and aggregation of the polypeptide chains. As a model system, BSA and ${\beta}$-lactoglobulin were used as a typical ${\alpha}$-helical and a ${\beta}$-sheet structure protein, respectively. A circular dichroism study showed that the increase of radiation decreased the ordered structure of proteins with a concurrent increase of aperiodic structure content. Fluorescence spectroscopy indicated that irradiation quenched the emission intensity excited at 280 nm. SDS-PAGE and a gel permeation chromatography study indicated that radiation caused initial fragmentation of proteins resulting in a subsequent aggregation due to cross-linking of protein molecules.

  • PDF

Mining Structure Elements from RNA Structure Data, and Visualizing Structure Elements

  • Lim, Dae-Ho;Han, Kyung-Sook
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2003.10a
    • /
    • pp.268-274
    • /
    • 2003
  • Most currently known molecular structures were determined by X-ray crystallography or Nuclear Magnetic Resonance (NMR). These methods generate a large amount of structure data, even far small molecules, and consist mainly of three-dimensional atomic coordinates. These are useful for analyzing molecular structure, but structure elements at higher level are also needed for a complete understanding of structure, and especially for structure prediction. Computational approaches exist for identifying secondary structural elements in proteins from atomic coordinates. However, similar methods have not been developed for RNA due in part to the very small amount of structure data so far available, and extracting the structural elements of RNA requires substantial manual work. Since the number of three-dimensional RNA structures is increasing, a more systematic and automated method is needed. We have developed a set of algorithms for recognizing secondary and tertiary structural elements in RNA molecules and in the protein-RNA structures in protein data banks (PDB). The present work represents the first attempt at extracting RNA structure elements from atomic coordinates in structure databases. The regularities in the structure elements revealed by the algorithms should provide useful information for predicting the structure of RNA molecules bound to proteins.

  • PDF

Effect of Gamma-Irradiation on the Molecular Properties of Blood Plasma Proteins

  • Song, Kyung-Bin;Lee, Seunghwan;Lee, Seunghyun
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.2
    • /
    • pp.184-187
    • /
    • 2002
  • Blood products from slaughterhouses that are not hygienically prepared for disposal or food consumption pose a human health hazard. Gamma irradiation is an effective method for sterilization of blood products, but may introduce changes in the molecular characteristics of proteins. This study evaluated the effects of irradiation on animal plasma proteins. Bovine and porcine blood was obtained from a slaughterhouse and the plasma proteins purified and lyophilized. The secondary structure and molecular weight distribution of the plasma protein solutions and powders were examined after ${\gamma}$-irradiation at 1, 5, 7 and 10 kGy. Gamma-irradiation affected the molecular properties of the protein solutions, but not the protein powders. Circular dichroism and sodium dodecyl sulfate-polyacrylamide gel electrophoresis studies showed that increased doses of ${\gamma}$-irradiation decrease the ordered structure of plasma proteins in solution, and cause initial fragmentation of the polypeptide chains and subsequent aggregation.