• 제목/요약/키워드: Secondary organic aerosol

검색결과 46건 처리시간 0.019초

생물기원 이차유기에어로졸의 점성도와 상 규명에 관한 최근 연구 동향 (Review of Viscosities and Phases of Biogenic Secondary Organic Aerosols)

  • 송미정
    • 한국대기환경학회지
    • /
    • 제32권4호
    • /
    • pp.349-359
    • /
    • 2016
  • Researchers have traditionally assumed that aerosol particles containing secondary organic aerosols (SOAs) are to be in liquid state with low viscosity even at low relative humidity. However, recent measurements showed that SOAs can have high viscosity under certain conditions. Herein, new different techniques for measurements of viscosities of SOA particles are introduced. Moreover, laboratory studies for the viscosities and the phases of biogenic SOAs produced by ${\alpha}$-pinene, isoprene, limonene, and ${\beta}$-caryophyllene of atmospheric relevance are reviewed. Future studies for determination of the phases of atmospheric aerosol particles are also suggested.

겨울철 광주지역 $PM_{2.5}$의 화학적 특성 조사 (Investigation of Chemical Characteristics of $PM_{2.5}$ during Winter in Gwangju)

  • 고재민;배민석;박승식
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.89-102
    • /
    • 2013
  • 24-hr $PM_{2.5}$ samples were collected from January 19 through February 27, 2009 at an urban site of Gwangju and analyzed to determine the concentrations of organic and elemental carbon(OC and EC), water-soluble OC(WSOC), eight ionic species($Na^+$, $NH^{4+}$, $K^+$, $Ca^{2+}$, $Mg^{2+}$, $Cl^-$, ${NO_3}^-$ and ${SO_4}^{2-}$), and 22 elemental species. Haze phenomena was observed during approximately 29%(10 times) of the whole sampling period(35 days), resulting in highly elevated concentrations of $PM_{2.5}$ and its chemical components. An Asian dust event was also observed, during which $PM_{2.5}$ concentration was 64.5 ${\mu}g/m^2$. Crustal materials during Asian dust event contributed 26.6% to the $PM_{2.5}$, while lowest contribution(5.1%) was from the haze events. OC/EC and WSOC/OC ratios were found to be higher during haze days than during other sampling days, reflecting an enhanced secondary organic aerosol production under the haze conditions. For an Asian dust event, enhanced concentrations of OC and secondary inorganic components were also found, suggesting the further atmospheric processing of precursor gases during transport of air mass to the sampling site. Correlations among WSOC, EC, ${NO_3}^-$, ${SO_4}^{2-}$, and primary and secondary OC fractions, which were predicted from EC tracer method, suggests that the observed WSOC could be formed from similar formation processes as those of secondary organic aerosol, ${NO_3}^-$ and ${SO_4}^{2-}$. Results from principal component analysis indicate also that the observed WSOC was strongly associated with formation routes of the secondary organic and inorganic aerosols.

Absorption properties and size distribution of aerosol particles during the fall season at an urban site of Gwangju, Korea

  • Park, Seungshik;Yu, Geun-Hye
    • Environmental Engineering Research
    • /
    • 제24권1호
    • /
    • pp.159-172
    • /
    • 2019
  • To investigate the influence of pollution events on the chemical composition and formation processes of aerosol particles, 24-h integrated size-segregated particulate matter (PM) was collected during the fall season at an urban site of Gwangju, Korea and was used to determine the concentrations of mass, water-soluble organic carbon (WSOC) and ionic species. Furthermore, black carbon (BC) concentrations were observed with an aethalometer. The entire sampling period was classified into four periods, i.e., typical, pollution event I, pollution event II, and an Asian dust event. Stable meteorological conditions (e.g., low wind speed, high surface pressure, and high relative humidity) observed during the two pollution events led to accumulation of aerosol particles and increased formation of secondary organic and inorganic aerosol species, thus causing $PM_{2.5}$ increase. Furthermore, these stable conditions resulted in the predominant condensation or droplet mode size distributions of PM, WSOC, $NO_3{^-}$, and $SO{_4}^{2-}$. However, difference in the accumulation mode size distributions of secondary water-soluble species between pollution events I and II could be attributed to the difference in transport pathways of air masses from high-pollution regions and the formation processes for the secondary chemical species. The average absorption ${\AA}ngstr{\ddot{o}}m$ exponent ($AAE_{370-950}$) for 370-950 nm wavelengths > 1.0 indicates that the BC particles from traffic emissions were likely mixed with light absorbing brown carbon (BrC) from biomass burning (BB) emissions. It was found that light absorption by BrC in the near UV range was affected by both secondary organic aerosol and BB emissions. Overall, the pollution events observed during fall at the study site can be due to the synergy of unfavorable meteorological conditions, enhanced secondary formation, local emissions, and long-range transportation of air masses from upwind polluted areas.

대기 정체와 수용성 에어로졸 입자의 질량크기분포의 관계 (Effect of Air Stagnation Conditions on Mass Size Distributions of Water-soluble Aerosol Particles)

  • 박승식;유근혜
    • 한국대기환경학회지
    • /
    • 제34권3호
    • /
    • pp.418-429
    • /
    • 2018
  • Measurements of 24-hr size-segregated ambient particles were made at an urban site of Gwangju under high pressure conditions occurred in the Korean Peninsula late in March 2018. The aim of this study was to understand the effect of air stagnation on mass size distributions and formation pathways of water-soluble organic and inorganic components. During the study period, the $NO_3{^-}$, $SO_4{^{2-}}$, $NH_4{^+}$, water-soluble organic carbon (WSOC), and humic-like substances(HULIS) exhibited mostly bi-modal size distributions peaking at 1.0 and $6.2{\mu}m$, with predominant droplet modes. In particular, outstanding droplet mode size distributions were observed on March 25 when a severe haze occurred due to stable air conditions and long range transport of aerosol particles from northeastern regions of China. Air stagnation conditions and high relative humidity during the study period resulted in accumulation of primary aerosol particles from local emission sources and enhanced formation of secondary ionic and organic aerosols through aqueous-phase oxidations of $SO_2$, $NO_2$, $NH_3$, and volatile organic compounds, leading to their dominant droplet mode size distributions at particle size of $1.0{\mu}m$. From the size distribution of $K^+$ in accumulation mode, it can be inferred that in addition to the secondary organic aerosol formations, accumulation mode WSOC and HULIS could be partly attributed to biomass burning emissions.

스모그 챔버를 이용한 이차 초미세유기먼지의 최근 연구 동향 (Review of Recent Smog Chamber Studies for Secondary Organic Aerosol)

  • 임용빈;이승복;김화진;김진영;배귀남
    • 한국대기환경학회지
    • /
    • 제32권2호
    • /
    • pp.131-157
    • /
    • 2016
  • A smog chamber has been an effective tool to study air quality, particularly secondary organic aerosol (SOA), which is typically formed by atmospheric oxidation of volatile organic compounds (VOCs). In controlled environments, smog chamber studies have validated atmospheric oxidation by identifying, quantifying and monitoring products with state-of-art instruments (e.g., aerosol mass spectrometer, scanning mobility particle sizer) and provided chemical insights of SOA formation by elucidating reaction mechanisms. This paper reviews types of smog chambers and the current state of smog chamber studies that have accomplished to find pathways of SOA formation, focusing on gas-particle partitioning of semivolatile products of VOC oxidation, heterogeneous reactions on aerosol surface, and aqueous chemistry in aerosol waters (e.g., cloud/fog droplets and wet aerosols). For future chamber studies, then, this paper discusses potential formation pathways of fine particles that East Asia countries (e.g., Korea and China) currently suffer from due to massive formation that gives rise to fatal health problems.

Secondary nanoparticle formation by a reaction of ozone and volatile organic compounds emitted from a commercial home cleaner liquid

  • Vu, Thai Phuong;Kim, Sun-Hwa;Lee, Seung-Bok;Bae, Gwi-Nam
    • 한국입자에어로졸학회지
    • /
    • 제7권1호
    • /
    • pp.1-8
    • /
    • 2011
  • In this study, the formation of nanoparticles by a reaction of ozone with the volatile organic compounds(VOCs) emitted from a commercial home cleaner liquid was investigated using a $1-m^3$ reaction chamber($1{\times}1{\times}1m$). The home cleaner liquid was found to contain many VOCs, particularly terpenes. Some of these VOCs are known to readily react with ozone, forming indoor secondary pollutants. The correlation of particle concentration and reacted ozone concentration was examined with injections of three different ozone concentrations; 50, 100 and 200 ppb. The secondary nanoparticles were formed faster, with their numbers and mass concentrations becoming higher on increasing the concentration of ozone injected.

겨울철 도시지역 대기 수용성 에어로졸 입자의 크기 분포를 결정하는 주요 인자 (Major factors determining the size distributions of atmospheric water-soluble aerosol particles at an urban site during winter)

  • 박승식
    • 한국입자에어로졸학회지
    • /
    • 제17권3호
    • /
    • pp.43-54
    • /
    • 2021
  • Size distributions of atmospheric particulate matter (PM) and its water-soluble organic and inorganic components were measured between January and February 2021 at an urban site in Gwangju in order to identify the major factors that determine their size distributions. Their size distributions during the study period were mainly divided into two groups. In the first group, PM, NO3-, SO42-, NH4+ and water-soluble organic carbon (WSOC) exhibited bi-modal size distributions with a dominant condensation mode at a particle size of 0.32 ㎛. This group was dominated by local production of secondary water-soluble components under atmospheric stagnation and low relative humidity (RH) conditions, rather than long-range transportation of aerosol particles from China. On the other hand, in the second group, they showed tri-modal size distributions with a very pronounced droplet mode at a diameter of 1.0 ㎛. These size distributions were attributable to the local generation and accumulation of secondary aerosol particles under atmospheric conditions such as atmospheric stagnation and high RH, and an increase in the influx of atmospheric aerosol particles by long-distance transportation abroad. Contributions of droplet mode NO3-, SO42-, NH4+ and WSOC to fine particles in the second group were significantly higher than those in the first group period. However, their condensation mode contributions were about two-fold higher in the first group than in the second group. The significant difference in the size distribution of the accumulation mode of the WSOC and secondary ionic components between the two groups was due to the influx of aerosol particles with a long residence time by long-distance transport from China and local weather conditions (e.g., RH).

위해성 이차 PAHs 성분 측정 및 관리 방안 (Measurement and Control of Hazardous PAHs Reaction Products)

  • 이지이;홍지형;정창훈;김용표
    • 한국입자에어로졸학회지
    • /
    • 제9권2호
    • /
    • pp.111-125
    • /
    • 2013
  • Among the hazardous air pollutions(HAPs), characteristics of secondary organic aerosols are not well understood. In this study, the current state for the measurement and analysis of representative secondary PAHs such as oxy-PAHs and nitro-PAHs are presented with the discussion of their toxicity. Also, further research directions for the secondary PAHs are suggested. It was found that the chemical reaction mechanisms and products of PAHs in the air are poorly identified and their toxicities are not well studied. Moreover ambient concentrations of those secondary PAHs are not well documented. Sampling methodologies of those secondary PAHs are similar with PAHs but the analytical protocols for those secondary PAHs are more complicated than PAHs. Future management directions are suggested along with future research directions.

제주도 고산에서의 1994~1995년 여름 입자상 탄소농도 측정 (Measurement of Carbonaceous Species in Fine Particles at Kosan, Cheju Island during the Two Summer Seasons of 1994 and 1995)

  • 이종훈;백남준;심상규;김용표
    • 한국대기환경학회지
    • /
    • 제13권3호
    • /
    • pp.179-191
    • /
    • 1997
  • The concentrations of organic and elemental carbon were determined using fine particle samples collected from Kosan, Cheju Island during the summer seasons of 1994 and 1995. The daily mean concentrations of organic and elemental carbon for each measurement period were 3.74 and 0.27 $\mu\textrm{g}$/㎥ in 1994, while those of 1995 were 2.36 and 0.10 $\mu\textrm{g}$/㎥, respectively The concentrations of organic carbon were higher than those commonly observed from clean areas around the world, but those of elemental carbon were lower than, or comparable to, other clean areas in the world. The resulting ratios of total carbon to elemental carbon at this site were thus higher than those seen from other metropolitan and non-polluted regions abroad. In addition according to our analysis, the 1994 measurement period can be classified into two periods: enhanced (July 20 and August 1) and reduced levels (August 2 and 9) of the carbonaceous species. The observed difference between two periods may be in part accounted for by the air trajectories representing each period. During the former period, the air masses from the Asian continent and Japan were dominant, while the air masses from the North Pacific Ocean came during the latter period. OC/EC ratios at the site were calculated to predict the possible formation of secondary organic aerosol . Based on our observations, we suggest that the formation of secondary organic aerosol might be an important pathway to the production of organic carbons.

  • PDF

온도와 광도가 톨루엔-NOx-공기 혼합물의 광산화 반응에 미치는 영향의 비교 (Comparison of Temperature and Light Intensity Effects on the Photooxidation of Toluene-NOx-Air Mixture)

  • 주옥정;배귀남;최지은;이승복;김영성;문길주;윤순창
    • 한국대기환경학회지
    • /
    • 제23권3호
    • /
    • pp.353-363
    • /
    • 2007
  • To differentiate temperature effect from the light intensity effect on the formation of secondary products during the photooxidation of toluene-$NO_x$-air mixtures, steady-state air temperature was changed from $20^{\circ}C\;to\;33^{\circ}C$ at the same light intensity of $0.39min^{-1}$ in an indoor smog chamber. Smog chamber consisted of 64 blacklights and a $5.8m^3$ reaction bag made of Teflon film. Air temperature was controlled by an air-conditioning system. The starting time for rapid conversion of NO to $NO_2$ was slightly delayed with decreasing air temperature. In contrast to light intensity effect, the ozone formation time and the ozone production rate were insensitive to air temperature. Although the formation time for secondary organic aerosols was not changed, the particle number concentration increased with temperature. However, the newly formed secondary organic aerosol mass at lower temperature was higher than that at higher temperature. Since light intensity significantly affected the starting time and quantity of ozone and aerosol formation, it is considered that the temperature could contribute partly the quantity of aerosol formation during the photooxidation of toluene-$NO_x$-air mixtures.