• Title/Summary/Keyword: Secondary nutrients

Search Result 65, Processing Time 0.036 seconds

Some Proposed Indices of Structural Regeneration of Secondary Forests and Their Relation to Soil Properties

  • Aweto, Albert Orodena
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.4
    • /
    • pp.292-303
    • /
    • 2021
  • Studies that relate the structure of tropical regrowth vegetation to soil properties are generally lacking in the literature. This study proposes three indices for assessing the structural regeneration of secondary forests. They are: (1) the tree diameter class, (2) the plant life form and (3) the woody/herbaceous plants ratio indices. They were applied to assess the regeneration status of forest regrowth vegetation (aged 1-10 years), derived savanna regrowth vegetation in south western Nigeria, and to secondary forests in different stages of succession in Columbia and Venezuela, Bolivia, Mexico in South and Central America and semi-arid savanna in Ethiopia and seasonal deciduous forest successional stages in India. In all the cases, the indices increased with increasing age of regrowth vegetation and hence, with increasing structural complexity of regenerating vegetation. The tree diameter class index increased from 32.1% in a 9-year secondary forest to 69.0% in an 80-year-old secondary forest in Columbia and Venezuela and from 0.4% in a 1-year fallow to 20.9% in 10-year regrowth vegetation in southwestern Nigeria. In semi-arid savanna in northern Ethiopia, the woody/herbaceous plants ratio index increased from 18.1% in a 5-year protected grazing enclosure to 75.1% in 15-year protected enclosure, relative to the status of 20-year enclosure. The indices generally had correlations of 0.6-0.90 with species richness and Simpson's/Margalef's species diversity, implying that they are appropriate measures of ecosystem development over time. The proposed indices also had strong and positive correlations with soil organic carbon and nutrients. They are therefore, significant indicators of fertility status.

Effects of Nutrient Levels on Cell Growth and Secondary Carotenoids Formation in the Freshwater Green Alga, Chlorococcum sp.

  • Liu, Bei-Hui;Haizhang, Dao;Lee, Yuan-Kun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.201-207
    • /
    • 2000
  • The freshwater green alga Chlorococcum sp. grew on NH_4^{+},{\;}NO_3^{-}$, urea, yeast extract, and peptone as the nitrogen source showing similar pattens of growth and secondary carotenoid (SC) production. However, the most suitable nitrogen source for the induction fo SC was urea. The dffects of nutrient levels (urea, phosphate, sulfate, ferrous iron, and salt) on growth and SC production were stydied by varying the concentration of each nutrient in batch cultures. High biomass production was achieved in cultures containing 20-28 mM urea, 4.8-10 mM phosphate, 1.6 mM sulfate, 70 mM phosphate, 1.6 mM sulfate, 170 mM NACl, and $50{\;}\mu\textrm{M}$ iron. The optimum concentrations of nutrients for biomass and for the SC accumulation in biomass were evaluated and the two media for achieving high biomass production and SC production were thus developed. The extent to which each parameter to stimulate the formation of SC in the alga were varied and the potentially improned SC prodution by manipulating the nutrient levels in the modified media were descussed.

  • PDF

Fertilization Effects on Growth, Foliar Nutrients and Extract Concentrations in Ginkgo Seedlings (은행나무 묘목(苗木)에 대(對)한 시비(施肥)가 생장(生長) 및 엽내(葉內) 양분(養分)과 유용(有用) 추출물(抽出物) 농도(濃度)에 미치는 영향(影響))

  • Son, Yowhan;Kim, Zin-Suh;Hwang, Jae Hong;Park, Jung Soo
    • Journal of Korean Society of Forest Science
    • /
    • v.87 no.1
    • /
    • pp.98-105
    • /
    • 1998
  • We measured seedling growth, foliar nutrient and extract concentrations of 3-year-old Ginkgo biloba seedlings growing in a nursery following a single fertilization with nitrogen (N), phosphorus (P) and nitrogen plus phosphorus (N+P) fertilizers. Fertilization did not change foliage, stem and root biomass of the seedlings except for the high N+P treatment, Foliar N and P concentrations following fertilization varied according to the amount of fertilizers. In general, foliar N and P concentrations increased with fertilization, but fertilization with 400kg N/ha and 100kg P/ha decreased foliar N and P concentrations, respectively. Seedling growth and foliar nutrient concentrations showed that N and P were the growth-limiting nutrients in our study site. It was found that fertilization reduced the concentrations of secondary metabolites (Ginkgo flavon glycosides and terpene lactones) in foliages. It seemed there was a relationship between foliage biomass production and secondary chemicals in G. biloba seedlings.

  • PDF

Effects of Nutrients on Quorum Signals and Secondary Metabolite Productions of Burkholderia sp. O33

  • Keum, Young-Soo;Lee, Young-Ju;Lee, Youn-Hyung;Kim, Jeong-Han
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.10
    • /
    • pp.1142-1149
    • /
    • 2009
  • Several bioactive metabolites, including pyrrolnitrin, N-acylhomoserine lactones, and polyhydroxyalkanoates were isolated from Burkholderia sp. O33. Effects of various nutrients, including sugars, gluconolactone, glycerol, tryptophan, chloride, and zinc were investigated in relation to the production of these metabolites. Logarithmic increase of pyrrolnitrin was observed between 2-5 days and reached a maximum at 7-10 days. Tryptophan concentration reached the maximum at 3 days, whereas 7-chlorotryptophan was gradually increased throughout the studies. Among various carbon sources, gluconolactone, trehalose, and glycerol enhanced pyrrolnitrin production, whereas strong inhibitory effects were found with glucose. Relative concentrations of pyrrolnitrin and its precursors were in the order of pyrrolnitrin$\gg$dechloroaminopyrrolnitrin or aminopyrrolnitrin throughout the experiments. Among three N-acylhomoserine lactones, the N-octanoyl analog was the most abundant quorum sensing signal, of which the concentrations reached the maximum in 2-3 days, followed by a rapid dissipation to trace level. No significant changes in pyrrolnitrin biosynthesis were observed by external addition of N-acylhomoserine lactones. Polyhydroxyalkanoates accumulated up to 3-4 days and decreased slowly thereafter. According to the kinetic analyses, no strong correlations were found between the levels of pyrrolnitrin, N-acylhomoserine lactones, and polyhydroxyalkanoates.

Reappraisal of Stimulatory Effect of Garlic on Kimchi Fermentation (마늘의 김치발효 촉진작용에 관한 연구)

  • Lee, Joo-Young;Choi, Mi-Kyung;Kyung, Kyu-Hang
    • Korean Journal of Food Science and Technology
    • /
    • v.40 no.4
    • /
    • pp.479-484
    • /
    • 2008
  • There have been contradictory reports concerning the role of garlic on kimchi fermentation; therefore, in this study, the stimulatory effect of garlic on the fermentation of kimchi was reappraised. In this study, fermentation of kimchi prepared using spring Chinese cabbage was stimulated by the addition of garlic, but kimchi prepared using autumn Chinese cabbage was not. In addition, the results of this study revealed that the fermentation of kimchi prepared using spring Chinese cabbage was found to be stimulated by glucose, yeast extract, peptone, and secondary ingredients of kimchi, but the fermentation of kimchi prepared using autumn Chinese cabbage was not stimulated by these ingredients. Taken together, these results indicate that general nutrients in garlic stimulate the fermentation of kimchi by compensating for nutrients that are not found in spring Chinese cabbages. However, these findings do not indicate that certain specific substance(s) in garlic stimulate kimchi fermentation.

Wastewater Treatment Using Ultrafiltration (UF) and Reverse Osmosis (RO) Process (침지형 한외여과 막공법과 역삼투 공법을 이용한 하.폐수처리)

  • Choi, H.J.;Park, Y.J.;Lee, S.M.
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.678-683
    • /
    • 2012
  • One of alternatives to solve the global water shortages is the reuse of wastewater. The aim of this study was to evaluate whether it can be reused for industrial water from wastewater in "A" City with ultrafiltration (UF) and reverse osmosis (RO) process. The results obtained in this study were that the inorganics such as Na, Mg, Cl, Ca, Mn, $PO_4$, $SO_4$, etc. were removed with high treatment efficiency (more than 97%), respectively. However, the removal of $NH_4$-N, TN, $NO_3$-N, BOD was found to be 35.71%, 85.21%, 87.05% and 56%, respectively. The removal efficiency of nutrients was relatively low compared to other metal ions. Despite low nutrients removal, the treated wastewater is recommended to reuse, because the nutrient contents in influent from the secondary wastewater treatment plant were small amount. In addition, all other metrics in the wastewater were found to be lower amount than wastewater reuse criteria. Therefore, the wastewater treated by UF-RO could be sufficient to reuse for industrial waster.

Dietary rambutan peel powder as a rumen modifier in beef cattle

  • Ampapon, Thiwakorn;Wanapat, Metha
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.5
    • /
    • pp.763-769
    • /
    • 2020
  • Objective: The experiment was conducted to study the effect of rambutan (Nephelium lappaceum) fruit peel powder (RP) on feed consumption, digestibility of nutrients, ruminal fermentation dynamics and microbial population in Thai breed cattle. Methods: Four, 2-year old (250±15 kg) beef bull crossbreds (75% Brahman×25% local breed) were allotted to experimental treatments using a 4×4 Latin square design. Four dietary supplementation treatments were imposed; non-supplementation (control, T1); supplementation of RP fed at 2% of dry matter intake (DMI) (low, T2); supplementation of RP fed at 4% of DMI (medium, T3) and supplementation of RP fed at 6% of DMI (high, T4). All cattle were given a concentrate supplement at 1% of body weight while Napier grass was provided as a free choice. Results: The findings revealed that RP supplementation did not negatively affect (p>0.05) DMI of Napier grass, while RP intake and total DMI were the greatest in the RP supplementation at 4% and 6% DMI. Nevertheless, the nutrients (dry matter, organic matter, crude protein, neutral detergent fiber, and acid detergent fiber) digestibilities were not changed in the RP supplementation groups. Rumen fermentation parameters especially those of total volatile fatty acids, acetate and butyrate were not significantly changed. However, the propionate concentration was remarkably increased (p<0.05) in the RP supplementation. Notably, the ratio of acetate to propionate, the number of protozoa, as well as the methane estimation were significantly reduced in the RP supplemented groups (4% and 6% of DMI), while the counts of bacteria was not altered. Conclusion: Supplementation of RP (4% of DMI) improved rumen propionate production, reduced protozoal population and methane estimation (p<0.05) without a negative effect on feed consumption and nutrients total tract digestibilities in beef cattle. Using dietary rambutan fruit peel powder has potential promise as a rumen regulator.

Ecosystem Health Diagnosis Using Integrative Multiple Eco-metric Model Approaches

  • Kim, Hyun-Mac;Choi, Ji-Woong;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.36 no.1
    • /
    • pp.73-83
    • /
    • 2013
  • The object of this study was to evaluate lotic ecosystem health using multiple eco-metric approaches such as water chemistry diagnosis, physical habitat health evaluations, and biological integrity modeling at 100 streams of four major watersheds. For the study, eight chemical water quality parameters such as nutrients (N, P) and organic material were measured and 11-metric models of Qualitative Habitat Evaluation Index (QHEI) and multiple eco-metric health assessment model (MEHA) were applied to the four major watershed. Nutrient analysis of nitrogen (N) and phosphorus (P) in all watersheds indicated a eutrophic state depending on the locations of sampling streams. Physical habitat health, based on the QHEI model, averaged 114 (range: 56 - 194), judging as a "good condition" by the criteria of Plafkin et al. (1989). In addition, primary (H1 - H4), secondary (H5 - H7), and tertiary habitat metric variables (H8 - H11) were analyzed in relation to the physical habitat degradations. The plots of tolerant species ($P_{TS}$) and sensitive species ($P_{SS}$) to water quality showed that the proportions of $P_{TS}$ had positive linear functions with nutrients, and that the $P_{SS}$ had inverse linear relations with the chemical variables. The model of eco-metric health assessment showed that mean MEHA was 20.4, indicating a fair condition. Overall, our data suggest that water chemistry, based on nutrients and organic matter, directly modified the trophic structures in relation to food chain in the aquatic ecosystems, and then these directly influenced the compositions of tolerance/sensitive species, resulting in degradations of overall ecological health.

Feasibility Study of Intermittent Slow Sand Filtration for Agricultural Reuse of Reclaimed Water (농업적 용수재이용을 위한 간헐분사 완속모래여과 하수재처리 효율 평가)

  • 윤춘경;정광욱;함종화;황하선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.45 no.5
    • /
    • pp.160-170
    • /
    • 2003
  • A pilot study was performed to examine the feasibility of intermittent slow sand filtration for agricultural reuse of reclaimed water. The effluent of biofilter for 16-unit apartment was used as influent to the slow sand filtration system at 0.6 $m^3$/day loading rate using 15 seconds spray in every 10 minutes on the about 1 $m^2$ surface area and 0.5 m depth. The influent concentrations of total coliform (TC), fecal coliform (FC) and E. coli were in the range of 10.000 MPN/100 mL. and they were reduced to less than 1,000 MPN/100 mL after filtration with average of 320, 270, and 154 MPN/100 mL, respectively, showing over 95 % removal. Turbidity and SS were improved effectively and their average concentration was reduced to 0.8 NTU and 1.7 mg/L, respectively, and removal rate was about 50 %. Average BOD and COD concentrations were also reduced substantially to 2.6 and 25.8 mg/L with about 55 and 21 % removal rate, respectively. Nutrients removal was relatively low and removal rate for T-N and T-P was low however, remaining nutrients might be beneficial and less concerned in case of agricultural reuse. The concentration of biofilter effluent used in this experiment was in the range of secondary treatment effluent but slightly stronger than the one from existing wastewater treatment plants (WWTPs). Therefore, intermittent slow sand filtration might be also applicable to the effluent from WWTPs as long as its agricultural reuse is available. Considering stable performance and effective removal of bacterial indicators as well as other water quality parameters, low maintenance, and cost-effectiveness, the intermittent slow sand filtration was thought to be an effective and feasible alternative for agricultural reuse of reclaimed water. This paper is a preliminary result from pilot study and further investigations are recommended on the optimum design parameters before full scale application.

A NEW TREATMENT SYSTEM FOR ANIMAL WASTE WATER USING MICROORGANISM, SOIL AND VEGETATION

  • Oshida, T.;Fukuyasu, T.;Kohzaki, K.;Izumikawa, Y.;Kawanabe, S.;Konishi, S.;Oikawa, N.;Matsumoto, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.6 no.2
    • /
    • pp.205-209
    • /
    • 1993
  • A new treatment system for animal waste water has been developed as an alternative to the activated sludge process. It consists of two treatments; one is operated with 7 tanks, and the other is soil and plant cultivation bed. Aerobic microorganisms are added to the influent water in the tanks where the water is aerated so that the microbes utilize the pollutants, while sedimentation removes the indigestible solids. In the secondary treatment the water, which has already received a primary treatment, is filtered through soil where it also receives treatment by soil organisms. In addition there is transpiration of water and absorption of minerals by plants. In the primary treatment BOD, SS, coliforms (E. coli), TP and total bacteria were removed 79-99%, but COD and TN were removed only 58% and 36%, respectively. In the secondary treatment removal of nutrients proceeded further, and 93-99% of pollutants were removed. The treated waters met the quality standard of discharge water in Japan except for TN, which was in too great a concentration to meet discharge standards. This problem requires further study.