Browse > Article
http://dx.doi.org/10.4014/jmb.0801.465

Effects of Nutrients on Quorum Signals and Secondary Metabolite Productions of Burkholderia sp. O33  

Keum, Young-Soo (Department of Agricultural Biotechnology, Seoul National University)
Lee, Young-Ju (Department of Agricultural Biotechnology, Seoul National University)
Lee, Youn-Hyung (Department of Horticultural Biotechnology, KyungHee University)
Kim, Jeong-Han (Department of Agricultural Biotechnology, Seoul National University)
Publication Information
Journal of Microbiology and Biotechnology / v.19, no.10, 2009 , pp. 1142-1149 More about this Journal
Abstract
Several bioactive metabolites, including pyrrolnitrin, N-acylhomoserine lactones, and polyhydroxyalkanoates were isolated from Burkholderia sp. O33. Effects of various nutrients, including sugars, gluconolactone, glycerol, tryptophan, chloride, and zinc were investigated in relation to the production of these metabolites. Logarithmic increase of pyrrolnitrin was observed between 2-5 days and reached a maximum at 7-10 days. Tryptophan concentration reached the maximum at 3 days, whereas 7-chlorotryptophan was gradually increased throughout the studies. Among various carbon sources, gluconolactone, trehalose, and glycerol enhanced pyrrolnitrin production, whereas strong inhibitory effects were found with glucose. Relative concentrations of pyrrolnitrin and its precursors were in the order of pyrrolnitrin$\gg$dechloroaminopyrrolnitrin or aminopyrrolnitrin throughout the experiments. Among three N-acylhomoserine lactones, the N-octanoyl analog was the most abundant quorum sensing signal, of which the concentrations reached the maximum in 2-3 days, followed by a rapid dissipation to trace level. No significant changes in pyrrolnitrin biosynthesis were observed by external addition of N-acylhomoserine lactones. Polyhydroxyalkanoates accumulated up to 3-4 days and decreased slowly thereafter. According to the kinetic analyses, no strong correlations were found between the levels of pyrrolnitrin, N-acylhomoserine lactones, and polyhydroxyalkanoates.
Keywords
Burkholderia O33; pyrrolnitrin; quorum sensing; N-acylhomoserine lactone; polyhydroxyalkanoates;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 4  (Related Records In Web of Science)
연도 인용수 순위
1 Chan, E. C. 1994. Cloning a mutated trp operon for the biosynthesis of an antibiotic agent. Biotechnol. Lett. 16: 1021-1026   DOI   ScienceOn
2 De Laurentis, W., L. Khim, J. L. R. Anderson, A. Adam, R. S. Philips, S. K. Chapman, K.-H. van Pee, and J. H. Naismith. 2007. The second enzyme in pyrrolnitrin biosynthesis pathway is related to the heme-dependent dioxygenase superfamily. Biochemistry 46: 12393-12404   DOI   ScienceOn
3 Dubuis, C. and D. Haas. 2007. Cross-species gacA-controlled induction of antibiosis in pseudomonads. Appl. Environ. Microbiol. 73: 650-654   DOI   ScienceOn
4 Elander, R. P., J. M. Mabe, R. H. Hamill, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. Appl. Microbiol. 16: 753-758   PUBMED   ScienceOn
5 Hammer, P. E., D. S. Hill, S. T. Lam, K.-H. van P$\acute{e}$e, and J. M. Ligon. 1997. Four genes from Pseudomonas fluorescens that encode the biosynthesis of pyrrolnitrin. Appl. Environ. Microbiol. 63: 2147-2154   PUBMED   ScienceOn
6 Hoffmann, N. and B. H. A. Rehm. 2005. Nitrogen-dependent regulation of medium-chain length polyhydroxyalkanoate biosynthesis genes in pseudomonads. Biotechnol. Lett. 27: 279-282   DOI   ScienceOn
7 Holzer, M., W. Burd, H.-U. Reibig, and K.-H. Van Pee. 2001. Substrate specificity and regioselectivity of tryptophan 7-halogenase from Pseudomonas fluorescens BL915. Adv. Synth. Catal. 343:591-595   DOI   ScienceOn
8 Kirner, S., P. E. Hammer, D. S. Hill, A. Altmann, I. Fisher, L. J. Weislo, M. Lanahan, K.-H. van Pee, and J. M. Ligon. 1998. Functions encoded by pyrrolnitrin biosynthetic genes from Pseudomonas fluorescens. J. Bacteriol. 180: 1939-1943   PUBMED   ScienceOn
9 Nowak-Thompson, B., N. Chaney, J. S. Wing, S. J. Gould, and J. E. Loper. 1999. Characterization of the pyoluteorin biosynthetic gene cluster of Pseudomonas fluorescens Pf-5. J. Bacteriol. 181: 2166-2174   PUBMED   ScienceOn
10 Ruiz, J. A., N. I. L$\acute{o}$   PUBMED   ScienceOn
11 Schnider, U., C. Keel, C. Blumer, J. Troxler, G. Defago, and D. Haas. 1995. Amplification of the housekeeping sigma factor in Pseudomonas fluorescens CHA0 enhances antibiotic production and improves biocontrol abilities. J. Bacteriol. 177: 5387-5392   PUBMED   ScienceOn
12 van Rij, E. T., M. Wesselink, T. F. C. Woeng, G. V. Bloemberg, and B. J. J. Lugtenberg. 2004. Influence of environmental conditions on the production of phenazine-1-carboxamide by Pseudomonas chloraphis PCL1391. Mol. Plant Microbe Interact. 17: 557-566   DOI   ScienceOn
13 Schnider, U., C. Keel, C. Voisard, G. Defago, and D. Haas. 1995. Tn5-directed cloning of pqq genes from Pseudomonas fluorescens CHA0: Mutational inactivation of the genes results in overinduction of the antibiotic pyoluteorin. Appl. Environ. Microbiol. 61: 3856-3864   PUBMED   ScienceOn
14 Yu, J. and Y. Si. 2004. Metabolic carbon fluxes and biosynthesis of polyhydroxyalkanoates in Ralstonia eutropha on short chain fatty acids. Biotechnol. Prog. 20: 1015-1024   DOI   ScienceOn
15 Liu, X., M. Bimerew, Y. Ma, H. Muller, M. Ovardis, L. Eberl, G. Berg, and L. Chernin. 2007. Quorum sensing signaling is required for production of the antibiotic pyrrolnitrin in a rhizospheric biocontrol strain of Serratia plymuthica. FEMS Microbiol. Lett. 270: 299-305   DOI   ScienceOn
16 Salcher, O. and F. Lingens. 1980. Metabolism of tryptophan by Pseudomonas aureofaciens and its relationship to pyrrolnitrin biosynthesis. J. Gen. Microbiol. 121: 465-471   PUBMED   ScienceOn
17 Velazquez, F., K. Pfl$\ddot{u}$ger, I. Cases, L. I. de Eugenio, and V$\acute{i}$cto de Lorenzo. 2007. The phosphotransferase system formed by PtsP, PtsO, and PtsN proteins controls production of polyhydroxyalkanoates in Pseudomonas putida. J. Bacteriol. 189: 4529-4533   DOI   ScienceOn
18 Leadbetter, J. R. and E. P. Greenberg. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926   DOI   ScienceOn
19 Berger, E., B. A. Ramsay, J. A. Ramsay, C. Chavarie, and G. Braunegg. 1989. PHB recovery by hypochlorite digestion. Biotechnol. Tech. 3: 227-232   DOI
20 Thomas, M. G., M. D. Burkart, and C. T. Walsh. 2002. Conversion of L-proline to pyrrolyl-2-carboxy-S-PCP during undecylprodigiosin and pyoluteorin biosynthesis. Chem. Biol. 9:171-184   DOI   ScienceOn
21 Wattanaphon, H. T., A. Kerdsin, C. Thannacharoen, P. Sangvanich, and A. S. Vangnai. 2008. A biosurfactant from Burkholderia cenocepacia BSP3 and its enhancement of pesticide solubilization. J. Appl. Microbiol. 108: 1-8   DOI   ScienceOn
22 Hwang, J., W. S. Chilton, and D. M. Benson. 2002. Pyrrolnitrin production by Burkholderia cepacia and biocontrol of Rhizoctonia stem rot of poinsettia. Biol. Control 25: 56-63   DOI   ScienceOn
23 Brodhagen, M., M. D. Henkels, and J. E. Loper. 2004. Positive autoregulation and signaling properties of pyoluteorin, an antibiotic produced by the biological control organism Pseudomonas fluorescens Pf-5. Appl. Environ. Microbiol. 70: 1758-1766   DOI   ScienceOn
24 Corbell, N. and J. E. Loper. 1995. A global regulator of secondary metabolite production in Pseudomonas fluorescens Pf-5. J. Bacteriol. 177: 6230-6236
25 Zhou, H., F. Yao, D. P. Roberts, and T. G. Lessie. 2003. AHLdeficient mutants of Burkholderia ambifaria BC-F have decreased antifungal activity. Curr. Microbiol. 47: 174-179   DOI   ScienceOn
26 Dong, Y.-H. and L.-H. Zhang. 2005. Quorum sensing and quorum-quenching enzymes. J. Microbiol. 43: 101-109   ScienceOn
27 Duerkrop, B. A., R. L. Ulrich, and E. P. Greenberg. 2007. Octanoyl-homoserine lactone is the cognate signal for Burkholderia mallei BmaR1-BmaI1 quorum sensing. J. Bacteriol. 189: 5034-5040   DOI   ScienceOn
28 El-Banna, N. and G. Winkelmann. 1998. Pyrrolnitrin from Burkholderia cepacia: Antibiotic activity against fungi and novel activities against Streptomyces. J. Appl. Microbiol. 85: 69-78   DOI   ScienceOn
29 Gunther IV, N. W., A. NuTEX>$\tilde{n}$ez, W. Fett, and D. K. Y. Solaiman. 2005. Production of rhamnolipids by Pseudomonas chlororaphis, a nonpathogenic bacterium. Appl. Environ. Microbiol. 71: 2288-2293   DOI   ScienceOn
30 Chang, C. J., H. G. Floss, D. J. Hook, J. A. Mabe, P. E. Manni, L. L. Martin, K. Schroeder, and T. L. Shieh. 1981. The biosynthesis of the antibiotic pyrrolnitrin by Pseudomonas aureofaciens. J. Antibiot. 34: 555-566   DOI
31 Yates, E. A., B. Philipp, C. Buckley, S. Atkinson, S. R. Chhabra, R. E. Sockett, C$\acute{a}$mara, Miguel et al. 2002. N-Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain lengthdependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect. Immun. 70: 5635-5646   DOI   ScienceOn
32 Hamill, R. L., R. Elander, J. Mabe, and M. Gorman. 1968. Metabolism of tryptophans by Pseudomonas aureofaciens. V. Conversion of tryptophan to pyrrolnitrin. Antimicrob. Agents Chemother. 388-396
33 Reddy, C. S. K., R. Ghai, and R. V. C. Kalia. 2003. Polyhydroxyalkanoates: An overview. Biores. Technol. 87: 137-146   DOI   ScienceOn
34 Shi, H.-P., C.-M. Lee, and W.-H. Ma. 2007. Influence of electron acceptor, carbon, nitrogen, and phosphorus on polyhydroxyalkanoate (PHA) production by Brachymonas sp. P12. World J. Microbiol. Biotechnol. 23: 625-632   DOI   ScienceOn
35 Chen, C.-C., L. Riadi, S.-J. Suh, D. E. Ohman, and L.-K. Ju. 2005. Degradation and synthesis kinetics of quorum-sensing autoinducer in Pseudomonas aeruginosa cultivation. J. Biotechnol. 117: 1-10   DOI   ScienceOn
36 Stubbe, J. and J. Tian. 2003. Polyhydroxyalkanoate (PHA) homeostasis: The role of PHA synthase. Nat. Prod. Rep. 20:445-457   DOI   ScienceOn
37 Wood, D. W., F. Gong, M. M. Daykin, P. Williams, and L S Pierson III. 1997. N-Acyl-homoserine lactone-mediated regulation of phenazine gene expression by Pseudomonas aureofaciens 30-84 in the wheat rhizosphere. J. Bacteriol. 179: 7663-7670   PUBMED   ScienceOn
38 Duffy, B. K. and Genevi$\grave{e}$ve D$\acute{e}$fago 2000. Controlling instability in gacS-gacA regulatory genes during inoculant production of Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 66: 3142-3150   DOI   ScienceOn
39 Byers, J. T., C. Lucas, G. P. C. Salmond, and M. Welch. 2002. Nonenzymatic turnover of an Erwinia carotovora quorumsensing signaling molecule. J. Bacteriol. 184: 1758-1766
40 Salcher, O. and F. Lingens. 1980. Isolation and characterization of Pseudomonas aureofaciens ATCC 15926 with an increased capacity for synthesis of pyrrolnitrin. J. Gen. Microbiol. 118:509-513   PUBMED   ScienceOn
41 Wang, Y.-J., and J. R. Leadbetter. 2005. Rapid acyl-homoserine lactone quorum signal biodegradation in diverse soils. Appl. Environ. Microbiol. 71: 1291-1299   DOI   ScienceOn
42 Duffy, B. K. and G. D$\acute{e}$fago. 1999. Environmental factors modulating antibiotic and siderophore biosynthesis by Pseudomonas fluorescens biocontrol strains. Appl. Environ. Microbiol. 65:2429-2438   PUBMED   ScienceOn
43 Seeger, M., M. Zielinski, K. N. Timmis, and B. Hofer. 1999. Regiospecificity of dioxygenation of di- to pentachlorobiphenyls and their degradation to chlorobenzoates by the bph-encoded catabolic pathway of Burkholderia sp. strain LB400. Appl. Environ. Microbiol. 65: 3614-3621   PUBMED   ScienceOn