• Title/Summary/Keyword: Secondary neutron

Search Result 55, Processing Time 0.02 seconds

A Study on the Incidence of Side Effects according to the Number of Beams in Intensity-modulated Radiation Therapy for Prostate Cancer using 15 MV (15 MV를 이용한 전립샘암 세기조절 방사선치료 시 빔의 개수에 따른 부작용 발생률에 관한 연구)

  • Joo-Ah Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.481-487
    • /
    • 2023
  • In this study, we analyzed the incidence of side effects of photoneutron dose according to the number of beams during intensity-modulated radiotherapy of prostate cancer using 15 MV. The radiation treatment plan design for intensity-modulated radiation therapy for prostate cancer was established with a prescription dose of 220 cGy per dose and a total of 7260 cGy for 33 treatments. The linear accelerator used in the experiment is Varian's True Beam STx (Varian, USA). Photoneutron dose was generated by using 15 MV energy in the planning target volume (PTV). The treatment plan was designed with IMRT 5, 7, and 9 portals using the Eclipse System (Varian Ver 10.0, USA). An optically stimulated luminescence albedo neutron dosimeter (Landauer Inc., USA) was used to measure photoneutron dose. IMRT 5 portals, 1.7 per 1,000, 7 portals, 1.8 per 1,000, 9 portals, 2.0 per 1,000 were calculated as the probability of experiencing side effects on the thyroid gland due to photoneutron dose. This study studies the risk of secondary radiation exposure dose that can occur during intensity-modulated radiation therapy, and it is considered that it will be used as useful data in relation to stochastic effects in the future.

Evaluation of dose distribution from 12C ion in radiation therapy by FLUKA code

  • Soltani-Nabipour, Jamshid;Khorshidi, Abdollah;Shojai, Faezeh;Khorami, Khazar
    • Nuclear Engineering and Technology
    • /
    • v.52 no.10
    • /
    • pp.2410-2414
    • /
    • 2020
  • Heavy ions have a high potential for destroying deep tumors that carry the highest dose at the peak of Bragg. The peak caused by a single-energy carbon beam is too narrow, which requires special measures for improvement. Here, carbon-12 (12C) ion with different energies has been used as a source for calculating the dose distribution in the water phantom, soft tissue and bone by the code of Monte Carlobased FLUKA code. By increasing the energy of the initial beam, the amount of absorbed dose at Bragg peak in all three targets decreased, but the trend for this reduction was less severe in bone. While the maximum absorbed dose per bone-mass unit in energy of 200 MeV/u was about 30% less than the maximum absorbed dose per unit mass of water or soft tissue, it was merely 2.4% less than soft tissue in 400 MeV/u. The simulation result showed a good agreement with experimental data at GSI Darmstadt facility of biophysics group by 0.15 cm average accuracy in Bragg peak positioning. From 200 to 400 MeV/u incident energy, the Bragg peak location increased about 18 cm in soft tissue. Correspondingly, the bone and soft tissue revealed a reduction dose ratio by 2.9 and 1.9. Induced neutrons did not contribute more than 1.8% to the total energy deposited in the water phantom. Also during 12C ion bombardment, secondary fragments showed 76% and 24% of primary 200 and 400 MeV/u, respectively, were present at the Bragg-peak position. The combined treatment of carbon ions with neutron or electron beams may be more effective in local dose delivery and also treating malignant tumors.

On Some Formulae for the Radioisotope Formation (I) - When a Reactor is Operated Regularly at a Certain Time Intervals-

  • Lee, Chang-Kun;Kim, Taeyoung;Yim, Yung-Chang
    • Nuclear Engineering and Technology
    • /
    • v.3 no.3
    • /
    • pp.148-154
    • /
    • 1971
  • Some formulae have been derived for the handy calculation of the formation of radioisotope when a reactor is operated regularly on a usual on-off pattern. In particular, the case of isotope production with the present operation condition of tile Korean reactor, which is in operation for 8.2 hours from Monday to Thursday and is not operated on friday and Sunday but is back in operation on Saturday only for 3.2 hours, is discussed herein with special emphasis. Should there be no secondary nuclear reaction resulting in the transformation of produced nuclide, the formula for the calculation of its activity could be derived as follows: (equation omitted) where A: activity (dps), $\Phi$: neutron flux (n cm$^{-2}$ sec$^{-1}$ ), No : number of atoms before the irradiation, $\sigma$ : activation cross section ($\textrm{cm}^2$), λ : disintegration constant of the radioactiveisotope formed (hr$^{-1}$ ), t : elapsed time of target in the reactor (hr), n : number of elasped days of target in the reactor, m : number of days from the first day of sample irradiation to Friday, s, r, q: number of weekday of Friday, Saturday and Sunday, respectively. Since the above formula consists of many invariables on the whole, the activity of each radioisotope to be produced can he easily and conveniently made available from the chart in advance which is made of the invariable terms calculated.

  • PDF

Rapidly and Accurately Processing of Low Melting Block for Shielding of Radiotherapy (방사선(放射線) 치료(治療)의 신속정확(迅速正確)을 위한 저온용융(低溫熔融) 차폐물(遮蔽物)의 제작(製作)과 응용(應用))

  • Chu, S.S.;Lee, D.H.;Park, C.Y.
    • Journal of Radiation Protection and Research
    • /
    • v.4 no.1
    • /
    • pp.14-20
    • /
    • 1979
  • For accurate and easily shielding irregular shaped organ, its minimized penumbra region and a low melting point alloy 'Lead Y' and synchronizing instrument have been developed. The 'Lead Y' is the quaternary eutectic alloy and it is composed of Lead 30.0% Tin 11.5% Bismuth 48 5% Cadmium 10.0% The density of its at $22^{\circ}C$ is $9.8g/cm^3$ and the melting temperature has $40^{\circ}C\;to\;68^{\circ}C$. The thickness of 'Lead Y' for perfect shielding of Co-60 gamma ray and LINAC 10MeV x-ray is 6cm and 7cm respectively. The 'Lead Y' shielding block is casted directly on the styrofoam from which is cut with hot wire of synchronizer device. The special features and advantages of the Lead Y shielding block could be summarized as follows; 1. The shielding block for radiotherapy is rapidly processed only with boiling water and styrofoam. 2. It is not injure one's health and not danger of a fire, because of not generating of any metals vapor and evil smelling. 3. It is very effective to minimize secondary penumbra for the protection of healthy tissue from unnecessary ionizing radiation regardless of the magnification source to skin distance. 4. The HVL of the Lead Y is 1.2cm for Co-60 gamma ray and it's shielding effect is almost same as the pure lead block. 5. The hardness of Lead Y is 1.5 times higher than lead block. 6. It's reavailability is higher than lead block and then one block of Lead Y is reavailable about 30 to 40 times. 7. It is usefull for shielding of x-ray, gamma ray, beta-ray, electron and neutron radiation. 8. The materials for Lead Y are easy to acquire with reasonable price and tractable.

  • PDF

Development of Manual Multi-Leaf Collimator for Proton Therapy in National Cancer Center (국립암센터의 양성자 치료를 위한 수동형 다엽 콜리메이터 개발)

  • Lee, Nuri;Kim, Tae Yoon;Kang, Dong Yun;Choi, Jae Hyock;Jeong, Jong Hwi;Shin, Dongho;Lim, Young Kyung;Park, Jeonghoon;Kim, Tae Hyun;Lee, Se Byeong
    • Progress in Medical Physics
    • /
    • v.26 no.4
    • /
    • pp.250-257
    • /
    • 2015
  • Multi-leaf collimator (MLC) systems are frequently used to deliver photon-based radiation, and allow conformal shaping of treatment beams. Many proton beam centers currently make use of aperture and snout systems, which involve use of a snout to shape and focus the proton beam, a brass aperture to modify field shape, and an acrylic compensator to modulate depth. However, it needs a lot of time and cost of preparing treatment, therefore, we developed the manual MLC for solving this problem. This study was carried out with the intent of designing an MLC system as an alternative to an aperture block system. Radio-activation and dose due to primary proton beam leakage and the presence of secondary neutrons were taken into account during these iterations. Analytical calculations were used to study the effects of leaf material on activation. We have fabricated tray model for adoption with a wobbling snout ($30{\times}40cm^2$) system which used uniform scanning beam. We designed the manual MLC and tray and can reduce the cost and time for treatment. After leakage test of new tray, we upgrade the tray with brass and made the safety tool. First, we have tested the radio-activation with usually brass and new brass for new manual MLC. It shows similar behavior and decay trend. In addition, we have measured the leakage test of a gantry with new tray and MLC tray, while we exposed the high energy with full modulation process on film dosimetry. The radiation leakage is less than 1%. From these results, we have developed the design of the tray and upgrade for safety. Through the radio-activation behavior, we figure out the proton beam leakage level of safety, where there detects the secondary particle, including neutron. After developing new design of the tray, it will be able to reduce the time and cost of proton treatment. Finally, we have applied in clinic test with original brass aperture and manual MLC and calculated the gamma index, 99.74% between them.