• Title/Summary/Keyword: Secondary information

Search Result 2,062, Processing Time 0.028 seconds

Prediction of Protein Secondary Structure Using the Weighted Combination of Homology Information of Protein Sequences (단백질 서열의 상동 관계를 가중 조합한 단백질 이차 구조 예측)

  • Chi, Sang-mun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.9
    • /
    • pp.1816-1821
    • /
    • 2016
  • Protein secondary structure is important for the study of protein evolution, structure and function of proteins which play crucial roles in most of biological processes. This paper try to effectively extract protein secondary structure information from the large protein structure database in order to predict the protein secondary structure of a query protein sequence. To find more remote homologous sequences of a query sequence in the protein database, we used PSI-BLAST which can perform gapped iterative searches and use profiles consisting of homologous protein sequences of a query protein. The secondary structures of the homologous sequences are weighed combined to the secondary structure prediction according to their relative degree of similarity to the query sequence. When homologous sequences with a neural network predictor were used, the accuracies were higher than those of current state-of-art techniques, achieving a Q3 accuracy of 92.28% and a Q8 accuracy of 88.79%.

Power Allocation and Performance Analysis for the Secondary User under Primary Outage Constraint in Cognitive Relay Network (Cognitive Relay 네트워크에서 일차 사용자의 Outage 제약 조건 하에서의 이차 사용자의 파워 할당 기법 및 성능 분석)

  • Kim, Hyung-Jong;Hong, Dae-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.8
    • /
    • pp.46-51
    • /
    • 2012
  • In this paper, we investigate the power allocation for cognitive relay networks. Cognitive relay networks offer not only increasing spectral efficiency by spectrum sharing but also extending the coverage through the use of relays. For spectrum sharing, conventional works have assumed that secondary users know perfect channel information between the secondary and primary users. However, this channel information may be outdated at the secondary user because of the time-varying properties or feedback latency from the primary user. This causes the violation for interference constraint, and the secondary user cannot share the spectrum of the primary after all. To overcome this problem, we propose the power allocation scheme for the secondary user under the allowable primary user's outage probability constraint. Since the proposed power allocation scheme does not use the instantaneous channel information, the secondary users have lower feedback burden. In addition, the proposed scheme is also robust to the outdated channel environment.

Cooperative Multi-relay Scheme for Secondary Spectrum Access

  • Duy, Tran-Trung;Kong, Hyung-Yun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.4 no.3
    • /
    • pp.273-288
    • /
    • 2010
  • In this paper, we propose a cooperative multi-relay scheme for a secondary system to achieve spectrum access along with a primary system. In the primary network, a primary transmitter (PT) transmits the primary signal to a primary receiver (PR). In the secondary network, N secondary transmitter-receiver pairs (ST-SR) selected by a centralized control unit (CCU) are ready to assist the primary network. In particular, in the first time slot, PT broadcasts the primary signal to PR, which is also received by STs and SRs. At STs, the primary signal is regenerated and linearly combined with the secondary signal by assigning fractions of the available power to the primary and secondary signals respectively. The combined signal is then broadcasted by STs in a predetermined order. In order to achieve diversity gain, STs, SRs and PT will combine received replicas of the primary signal, using selection combining technique (SC). We derive the exact outage probability for the primary network as well as the secondary network. The simulation results are presented to verify the theoretical analyses.

SABA (secondary structure assignment program based on only alpha carbons): a novel pseudo center geometrical criterion for accurate assignment of protein secondary structures

  • Park, Sang-Youn;Yoo, Min-Jae;Shin, Jae-Min;Cho, Kwang-Hwi
    • BMB Reports
    • /
    • v.44 no.2
    • /
    • pp.118-122
    • /
    • 2011
  • Most widely used secondary structure assignment methods such as DSSP identify structural elements based on N-H and C=O hydrogen bonding patterns from X-ray or NMR-determined coordinates. Secondary structure assignment algorithms using limited $C{\alpha}$ information have been under development as well, but their accuracy is only ~80% compared to DSSP. We have hereby developed SABA (Secondary Structure Assignment Program Based on only Alpha Carbons) with ~90% accuracy. SABA defines a novel geometrical parameter, termed a pseudo center, which is the midpoint of two continuous $C{\alpha}s$. SABA is capable of identifying $\alpha$-helices, $3_{10}$-helices, and $\beta$-strands with high accuracy by using cut-off criteria on distances and dihedral angles between two or more pseudo centers. In addition to assigning secondary structures to $C{\alpha}$-only structures, algorithms using limited $C{\alpha}$ information with high accuracy have the potential to enhance the speed of calculations for high capacity structure comparison.

Protein Secondary Structure Prediction using Multiple Neural Network Likelihood Models

  • Kim, Seong-Gon;Kim, Yong-Gi
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.314-318
    • /
    • 2010
  • Predicting Alpha-helicies, Beta-sheets and Turns of a proteins secondary structure is a complex non-linear task that has been approached by several techniques such as Neural Networks, Genetic Algorithms, Decision Trees and other statistical or heuristic methods. This project introduces a new machine learning method by combining Bayesian Inference with offline trained Multilayered Perceptron (MLP) models as the likelihood for secondary structure prediction of proteins. With varying window sizes of neighboring amino acid information, the information is extracted and passed back and forth between the Neural Net and the Bayesian Inference process until the posterior probability of the secondary structure converges.

A Method to Avoid Mutual Interference in a Cooperative Spectrum Sharing System

  • Tran, Truc Thanh;Kong, Hyung Yun
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.110-120
    • /
    • 2014
  • This article proposes a spectrum sharing method which can avoid the mutual interference in both primary and secondary systems. The two systems make them a priority to use two single-dimension orthogonal signals, the real and imaginary pulse amplitude modulation signals, if the primary system is not in outage with this use. A secondary transmitter is selected to be the primary relay and the active secondary source to perform this. This allows a simultaneous spectrum access without any mutual interference. Otherwise, the primary system attempts to use a full two-dimensional signal, the quadrature amplitude modulation signal. If there is no outage with respect to this use, the secondary spectrum access is not allowed. When both of the previous attempts fail, the secondary system is allowed to freely use the spectrum two whole time slots. The analysis and simulation are provided to analyze the outage performance and they validate the considerable improvement of the proposed method as compared to the conventional one.

Nonlinear Active Noise Control with On-Line Secondary Path Modeling (2차경로의 온라인 모델링이 포함된 비선형 능동소음제어기의 설계)

  • 오원근
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.5
    • /
    • pp.667-675
    • /
    • 2002
  • In this Paper, we present a new nonlinear active noise control scheme using neural networks. Two neural network4 are used, one is for the active controller and another one is for the secondary path model. This scheme is suitable for the plant which has time-varing secondary path dynamics, because the secondary path modeling is performed via on-line fashion. Simulation results of active noise control with nonlinear primary/secondary path are presented. The results show that the new algorithm can reduce the noise level greatly.

Technolgy trends for secondary battery cell and protection circuit (이차전지와 보호회로의 기술 동향)

  • Byun, Jae-in;Kim, Harksoo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.752-754
    • /
    • 2014
  • With the rapid development of the portable devices such as laptops, cell phones, digital devices, the important of the secondary battery is increasing. In recent years, semiconductor industries, display technologies, and secondary batteries are believed to be three core business. In particular, smart phones have higher performances, but secondary batteries are not follow the trends. Recently, the stability problem by battery heat is raised. In this paper, we survey technology trends of the secondary battery and protection circuit.

  • PDF

Connectivity Analysis of Cognitive Radio Ad-hoc Networks with Shadow Fading

  • Dung, Le The;An, Beongku
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3335-3356
    • /
    • 2015
  • In this paper, we analyze the connectivity of cognitive radio ad-hoc networks in a log-normal shadow fading environment. Considering secondary user and primary user's locations and primary user's active state are randomly distributed according to a homogeneous Poisson process and taking into account the spectrum sensing efficiency of secondary user, we derive mathematical models to investigate the connectivity of cognitive radio ad-hoc networks in three aspects and compare with the connectivity of ad-hoc networks. First, from the viewpoint of a secondary user, we study the communication probability of that secondary user. Second, we examine the possibility that two secondary users can establish a direct communication link between them. Finally, we extend to the case of finding the probability that two arbitrary secondary users can communicate via multi-hop path. We verify the correctness of our analytical approach by comparing with simulations. The numerical results show that in cognitive radio ad-hoc networks, high fading variance helps to remarkably improve connectivity behavior in the same condition of secondary user's density and primary user's average active rate. Furthermore, the impact of shadowing on wireless connection probability dominates that of primary user's average active rate. Finally, the spectrum sensing efficiency of secondary user significantly impacts the connectivity features. The analysis in this paper provides an efficient way for system designers to characterize and optimize the connectivity of cognitive radio ad-hoc networks in practical wireless environment.

Transmission Power-Based Spectrum Sensing for Cognitive Ad Hoc Networks

  • Choi, Hyun-Ho
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.2
    • /
    • pp.97-103
    • /
    • 2014
  • In spectrum sensing, there is a tradeoff between the probability of missed detection and the probability of a false alarm according to the value of the sensing threshold. Therefore, it is important to determine the sensing threshold suitable to the environment of cognitive radio networks. In this study, we consider a cognitive radio-based ad hoc network where secondary users directly communicate by using the same frequency band as the primary system and control their transmit power on the basis of the distance between them. First, we investigate a condition in which the primary and the secondary users can share the same frequency band without harmful interference from each other, and then, propose an algorithm that controls the sensing threshold dynamically on the basis of the transmit power of the secondary user. The analysis and simulation results show that the proposed sensing threshold control algorithm has low probabilities of both missed detection and a false alarm and thus, enables optimized spectrum sharing between the primary and the secondary systems.