• Title/Summary/Keyword: Secondary buckling

Search Result 32, Processing Time 0.031 seconds

A Study on the Compressive Ultimate Strength of Ship Plating with Complicated Shape of the Initial Deflection (복잡한 형상의 초기처짐을 가진 선체판의 압축최종강도에 관한 연구)

  • 고재용;박주신;이계희;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2004.04a
    • /
    • pp.83-88
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely. It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary buckling. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Rotational capacity of H-shaped steel beams under cyclic pure bending

  • Jia, Liang-Jiu;Tian, Yafeng;Zhao, Xianzhong;Tian, Siyuan
    • Steel and Composite Structures
    • /
    • v.30 no.2
    • /
    • pp.123-140
    • /
    • 2019
  • This paper presents experimental study on effects of width-to-thickness ratio and loading history on cyclic rotational capacity of H-shaped steel beams subjected to pure bending. Eight Class 3 and 4 H-shaped beams with large width-to-thickness ratios were tested under four different loading histories. The coupling effect of local buckling and cracking on cyclic rotational capacity of the specimens was investigated. It was found that loss of the load-carrying capacity was mainly induced by local buckling, and ductile cracking was a secondary factor. The width-to-thickness ratio plays a dominant effect on the cyclic rotational capacity, and the loading history also plays an important role. The cyclic rotational capacity can decrease significantly due to premature elasto-plastic local buckling induced by a number of preceding plastic reversals with relative small strain amplitudes. This result is mainly correlated with the decreasing tangent modulus of the structural steel under cyclic plastic loading. In addition, a theoretical approach to evaluate the cyclic rotational capacity of H-shaped beams with different width-to-thickness ratios was also proposed, which compares well with the experimental results.

Secondary Buckling Behavior Analysis on the Ship's Plate under Combined Load(Lateral Pressure Load and Axial Compressive Load) (조합하중을 받는 선체판부재의 2차좌굴거동 해석)

  • Park Joo-Shin;Ko Jae-Yong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.67-74
    • /
    • 2006
  • The ship plating is generally subjected to combined in-plane load and lateral pressure loads. In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion rf the vessel. Lateral pressure is due to water pressure and cargo. These load components are not always applied simultaneously, but more than one can normally exist and interact. Hence, for more rational and safe design rf ship structures, it is of crucial importance to better understand the interaction relationship of the buckling and ultimate strength for ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except for the impact load due to slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated secondary buckling behavior through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

  • PDF

Development of Compressive Ultimate Strength Formulations for Ship Plating Stiffener with Cutout (선체 유공보강판의 압축최종강도에 관한 설계식 개발)

  • Ko Jae-Yong;Park Joo-Shin;Oh Dong-Kee
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2004.05b
    • /
    • pp.121-125
    • /
    • 2004
  • Recently, High Tensile Steel is adapt to thin plate on the steel structure and marine structure is used widely, It is possible for buckling happens great. Specially, Initial deflection of ship structure happens in place absence necessarily by heat processing of welding or cutting etc. This Initial Deflection is exerted negative impact when thin plate absence complicated nonlinear behaviour accompanied secondary budding. As a result, must idealize initial deflection that occurrence is possible to endow stability and accuracy in the hull structure or marine structure and reflect in early structure design considering secondary buckling. Longi direction of compressive load interacts and analyzed finite element series analysis that apply various kinds initial deflection shape measured actually on occasion that is arranged simply supported condition in this research. Applied ANSYS (elasto-plasticity large deformation finite element method) to be mediocrity finite element program for analysis method and analysis control used in Newton-Raphson method & Arc-length method.

  • PDF

Experimental Study on the Vibration Control Capacity of Hybrid Buckling-Restrained Braces (하이브리드 비좌굴가새의 진동제어능력에 관한 실험적 연구)

  • Kim, Do Hyun;Ju, Young Kyu;Kim, Myung Han;Sung, Woo Gi;Kim, Sang Dae
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.1
    • /
    • pp.83-91
    • /
    • 2009
  • Buckling Restrained Braces (BRBs) show good seismic behavior. They do not dissipate energy, however, when they are subjected to minor earthquakes or wind. Hybrid Buckling Restrained Braces (H-BRBs), which can improve the wind performance of the BRB system, are a kind of hybrid damper system composed of a viscoelastic damper and BRBs. In this paper, two H-BRB specimens with different cores were experimentally investigated to ensure the structural behavior of the H-BRB system in an elastic range. The axial deformation of the primary resisting system was compared with that of the secondary resisting system, and the equivalent damping ratio of the H-BRBs was estimated. It was concluded that H-BRBs with double shear dampers show good structural behavior and are applicable to tall buildings, to improve the building performance at a comfortable level.

Long-Term Behaviors of Reinforced Concrete Pier Structures Considering Long Column Effects (철근콘크리트 장주 교각의 시간에 따른 거동)

  • Jung, Hyun-Soo;Kim, Su-Man
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.69-72
    • /
    • 2005
  • For reinforced concrete column under sustained loads, the member suffers additional lateral deflection due to creep. This deflection leads to additional bending in the member, which in turn causes the column to deflect still further. Therefore the secondary moment due to additional deflection causes an increase in primary moment and the strength of column is reduced. And also creep buckling may occur. On this study, nonlinear analysis of reinforced concrete long column including crack effects is carried out and then the strength of long column is revaluated.

  • PDF

A study on the refined resetting for the continuous weleded rail (장대레일 재설정 방법 개선 연구)

  • Kim, Woo-Jin;Jung, Chan-Mook;Min, Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.386-394
    • /
    • 2007
  • Due to the transportability problems, long rail shall be from base rail unit, which is normally 100m for regular rail and 300m for high speed rail. After these rail units are transported from the fabricator to the site, the field weld would be performed.axial stresses in the long rail is mainly from the temperature differences at various locations the long rail. Also the gaps between each welds cause secondary axial stresses in the rail. In addition to these, re-welds the fractured rails, rail buckling, irregular rail vibration, rail twist also result innonuniform axial stresses in the rail. To obtain the rail buckling stability, the rail stresses shall be released due to the resetting of CWR. Traditionally two resetting of CWR methods have been applied, the one is rail heater and the other is rail tenser. these methods, the latter has been recommended because it has less limitation in the rail length and it is easier to minimized the force differences. But even in this method, the calculation is cumbersome and is not easy to find out the rail stress distribution itself.refined methodsxial stress resetting in the long rail is studied and this study be easily applied in the real construction. From this approach, more rational rail maintenance system can be expected.

  • PDF

A Study on the Ultimate Strength of a Ship's Plate According to Initial Deflection Pattern in used Arc-Length Method (호장증분법에 의한 선체판의 초기처짐형상에 따른 최종강도에 관한 연구)

  • 고재용;박주신;박성현
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2003.05a
    • /
    • pp.21-26
    • /
    • 2003
  • Develop and need design application of carbon sex design concept that consider plasticity in elastic design concept until now. To Place that is representative construction of hull in this research rain deflection pattern analysis technique and grandeur increment method such as general load type increment law and displacement type increment law and Newton-Raphson method increment body law to use jointly compare. Specialty. through analysis by initial deflection pattern. examined closely carbon set conduct of place by initial deflection pattern. Applied thin plate structure which receive compressive load used ANSYS that analysis method is mediocrity finite element analysis program to save complicated conduct that effect that conduct after initial buckling and conduct after secondary buckling get in the whole construction is very big and such and grandeur increment law presumes complicated rain fan shape conduct in bifurcation point specially.

  • PDF

A Study on the Lateral Pressure Effect under Axial Compressive Load of Ship Platings (종방향 압축력을 받는 선체판부재의 횡압력 영향에 관한 연구)

  • Park Joo-Shin;Ko Jae-Yong;Lee Jun-Kyo
    • Journal of Navigation and Port Research
    • /
    • v.29 no.6 s.102
    • /
    • pp.515-522
    • /
    • 2005
  • The ship plating is generally subjected to. combined in-plane load and lateral pressure loads, In-plane loads include axial load and edge shear, which are mainly induced by overall hull girder bending and torsion of the vessel. Lateral pressure is due to. water pressure and cargo. These load components are nat always applied simultaneously, but mare than one can normally exist and interact. Hence, far mare rational and safe design of ship structures, it is af crucial importance to. better understand the interaction relationship af the buckling and ultimate strength far ship plating under combined loads. Actual ship plates are subjected to relatively small water pressure except far the impact load due to. slamming and panting etc. The present paper describes an accurate and fast procedure for analyzing the elastic-plastic large deflection behavior up to. the ultimate limit state of ship plates under combined loads. In this paper, the ultimate strength characteristics of plates under axial compressive loads and lateral pressure loads are investigated through ANSYS elastic-plastic large deflection finite element analysis with varying lateral pressure load level.

Postbuckling Failure Characteristics of Composite Stiffened Panels (복합재 보강패널의 좌굴 후 파손 특성)

  • Kim, Gwang-Su;Lee, Yeong-Mu;Jang, Yeong-Sun;Yu, Jae-Seok;An, Jae-Mo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.3
    • /
    • pp.37-43
    • /
    • 2006
  • Six types of hat stiffened composite panels were manufactured with different bonding methods and stiffener section shapes and compression testing of these panels were performed. The panels showed similar behaviors in bucking and postbuckling region before a skin-stiffener separation failure occurred. Although all the separation failures occurred at the same locations of stiffener flanges close by skin buckling crests, the separation loads, separation failure growth behaviors and final collapse loads were different with respect to bonding methods and stiffener section shapes. As the separation failure initiated early and propagated larger area, collapse loads and structural efficiency of the panels decreased.