• 제목/요약/키워드: Secondary batteries

Search Result 383, Processing Time 0.031 seconds

Characterization of Porous Poly(vinylidene fluoride)/Poly(ethylene carbonate) Membranes for Polymer Electrolytes of Lithium Secondary Batteries (리튬 이차전지 고분자 전해질용 다공성 Poly(vinylidene fluoride)/Poly(ethylene carbonate) 막의 특성 연구)

  • Jeon, Jae-Deok;Kwak, Seung-Yeop
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 2004.05b
    • /
    • pp.69-72
    • /
    • 2004
  • So far the most practical polymer electrolytes are gel systems, which contain a polymeric matrix, a lithium salt, and aprotic organic solvents. This has met with success but has had disadvantages that the addition of solvents promotes deterioration of the electrolyte's mechanical properties and increases its reactivity towards the lithium metal anode.[1](omitted)

  • PDF

Redox Properties of Polyaniline Films and Its Application to Lithium Secondary Batteries (Polyaniline 필름의 산화환원 특성 및 리튬 2차 전지 응용)

  • 김현철;박영철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.11a
    • /
    • pp.144-148
    • /
    • 1997
  • We synthesized polyaniline films electrochemically under constant current conditions, which exhibited electric conductivity as high as 100 S/cm. By charge and discharge cycling of polyaniline films, we obtained specific discharge capacity as high as 195 mAH/g using HSO$_4$- doped polyaniline. For the polyaniline synthesized using H$_2$SO$_4$ and HClO$_4$ composite electrolyte. we also obtained specific discharge capacity as high as 134 mAHg which rivals inorganic electro- active materials.

  • PDF

Structural and electrochemical properties of the Si anode film for lithium secondary batteries (리튬 이차전지에서 Si 음극박막의 구조적, 전기화학적 특성 연구)

  • Ju, Seung-Hyeon;Lee, Seong-Rae;Jo, Byeong-Won;Jo, Won-Il
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.145-146
    • /
    • 2008
  • RF 마그네트론 스퍼터링의 파워 ($50{\sim}150W$) 및 분압 ($2{\sim}10\;mTorr$)등의 증착 조건과 두께 ($50{\sim}1200nm$)에 따르는 Si 박막의 미세구조 변화와 그에 따르는 전기화학적 특성에 대하여 연구하였다. 파워와 분압이 증가할수록 미세구조가 거칠어지며 그에 따라 초기용량은 증가하였으며 두께가 증가함에 따라 사이클 특성은 감소하는 경향을 보였다.

  • PDF

Numerical Analysis on the Characteristic of Thermal Distribution for High Temperature Operating Battery Module (고온 작동형 전지모듈 온도분포 특성에 관한 수치해석)

  • Yi, Chung Seob;Lee, Byung Ho
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.12 no.5
    • /
    • pp.102-108
    • /
    • 2013
  • In this study, the experiment result and numerical analysis on temperature distribution of a secondary battery module for high temperature operation type were compared. Because experimental battery has been in danger of explosions, experiment on temperature distribution was carried out using dummy batteries. Study on NAS battery module, which is secondary battery of high temperature operation type, is as follows ; Test result showed that battery's temperature is in steady state uniformly after 8 hours in each section. It is similar to experimental result for temperature distribution from the result of numerical analysis, and it takes about 8.5 hours to the $300^{\circ}C$.

In-Depth Analysis of Coulombic Efficiency of Zinc-Air Secondary Batteries

  • Jeong, Jiung;Shin, Heon-Cheol
    • Journal of Electrochemical Science and Technology
    • /
    • v.11 no.1
    • /
    • pp.26-32
    • /
    • 2020
  • In this study, the side reactions that greatly affect the coulombic efficiency of a zinc-air secondary battery are quantitatively analyzed on the basis of the charging-discharging characteristics, open circuit self-discharge characteristics, and a series of calculations. In particular, the charge amounts consumed by water electrolysis and self-discharge during charging process are separately determined so that the charging efficiency (the amount of charge used in actual charging with respect to the applied charge amount) can be estimated, which would enable systematic understanding of the cause of coulombic efficiency degradation. Using two cells with different charging overvoltages, the validity of the proposed method can be assessed.

Electrochemical Properties and Structural Analysis of Carbon-Coated Silicon Anode for Lithium Secondary Batteries

  • Kim, Hyung-Sun;Chung, Kyung-Yoon;Cho, Byung-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.11 no.1
    • /
    • pp.37-41
    • /
    • 2008
  • The effects of carbon-coated silicon anode on the electrochemical properties and structural change were investigated. The carbon-coated silicon powders have been prepared by thermal decomposition under argon/10wt% propylene mixed gas flow at $700^{\circ}C$. The surface and crystal structure of the synthesized materials were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and Raman spectroscopy. Lithium cells with electrodes made from the uncoated and the carbon coated silicon anode were assembled and tested. The carbon-coated silicon particles merged together well after the insertion/extraction of lithium ions, and showed a relatively low irreversible capacity compared with the uncoated silicon particle.

The Polyaniline Electrode Doped with Li Salt and Protonic Acid in Lithium Secondary Battery

  • Ryu, Kwang-Sun;Kim, Kwang-Man;Hong, Young-Sik;Park, Yong-Joon;Jang, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.8
    • /
    • pp.1144-1148
    • /
    • 2002
  • We prepared the polyaniline (Pani) film and powder by chemical polymerization and doping with different dopants and also investigated the capability of Li//polyaniline cells after assembling. The oxidation/reduction potentials and electrochemical reaction of Li//polyaniline cells were tested by cyclic voltammetry technique. The Li//Pani-HCl cells with 10% and 20% conductors show a little larger specific discharge capacities than that without conductor. The highest discharge capacity of almost 50 mAh/g at 100th cycle is also achieved. However, Li//Pani-LiPF6 with 20% conductor shows a remarkable performance of ~90 mAh/g at 100th cycle. This is feasible value for using as the positive electrode material of lithium ion secondary batteries. It is also proved that the powder type electrode of Pani is better to use than the film type one to improve the specific discharge capacity and its stability with cycle.

In Situ X-ray Absorption Spectroscopic Study for α-MoO3 Electrode upon Discharge/Charge Reaction in Lithium Secondary Batteries

  • Kang, Joo-Hee;Paek, Seung-Min;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3675-3678
    • /
    • 2010
  • In-situ X-ray absorption spectroscopy (XAS) was used to elucidate the structural variation of $\alpha-MoO_3$ electrode upon discharge/charge reaction in a lithium ion battery. According to the XAS analysis, hexavalent Mo atoms in $\alpha-MoO_3$ framework are reduced as the amount of intercalated lithium ions increases. As lithium de-intercalation proceeds, most of pre-edge peaks are restored again. However, according to the Fourier transforms of the extended X-ray absorption fine structure (EXAFS) spectra, lithium de-intercalation reaction is partially irreversible upon the charge reaction, which is one of the main reasons why the capacity of $\alpha-MoO_3$ electrode decreases upon successive discharge/charge cycles.

Electrochemical Properties of Polypyrrole Nanotubules and it's Application to Lithium Secondary Batteries (Polypyrrole Nanotubules의 전기화학적 특성과 리튬 2차전지 정극으로 응용)

  • 김민성;김현철;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.339-342
    • /
    • 2000
  • Polypyrrole(PPy) nanotubules were formed within template pores by chemical synthesis using $FeCl_3$ as an oxidant. The oxidation peak of PPy nanotubules in the cyclic voltammogram was observed at about 2.8V and 3.3V vs. $Li/Li^+$, while in the case of PPy film, that was observed at about 3.0V. It suggests that the electron hopping on the main chain of PPy nanotubules was improved. When the PPy nanotubules was used to a cathode of lithium secondary battery, we obtained discharge capacity as much as 27 mAh/g, and initial coulomb efficiency by 90%. We expect that the capacity can be improved by further study.

  • PDF

The Prospect and Future of Li-ion Battery

  • Lee, Sung-Joon;Jeong, Seung-Hwan;You, Chung-Yeol;Soh, Dea-Wha;Hong, Sang-Jeen
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.627-628
    • /
    • 2005
  • In recent years, the rapid growth of portable electronic device market requires higher density characteristics of batteries. The speed at which portability and mobility is advancing hinges much on the battery. What is important is this energy source that engineers design handled devices around the battery, rather than the other way around. Much improvement has been made in reducing the power consumption of portable devices. Currently, the most popular secondary battery is Li-ion battery. Li-ion has won the limelight and become the most prominent battery. This paper reviews the prospect and future of the Li-ion battery.

  • PDF