Browse > Article
http://dx.doi.org/10.33961/jecst.2019.00339

In-Depth Analysis of Coulombic Efficiency of Zinc-Air Secondary Batteries  

Jeong, Jiung (School of Materials Science and Engineering, Pusan National University)
Shin, Heon-Cheol (School of Materials Science and Engineering, Pusan National University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.1, 2020 , pp. 26-32 More about this Journal
Abstract
In this study, the side reactions that greatly affect the coulombic efficiency of a zinc-air secondary battery are quantitatively analyzed on the basis of the charging-discharging characteristics, open circuit self-discharge characteristics, and a series of calculations. In particular, the charge amounts consumed by water electrolysis and self-discharge during charging process are separately determined so that the charging efficiency (the amount of charge used in actual charging with respect to the applied charge amount) can be estimated, which would enable systematic understanding of the cause of coulombic efficiency degradation. Using two cells with different charging overvoltages, the validity of the proposed method can be assessed.
Keywords
Zn-Air Battery; Efficiency; Side Reaction; Water Electrolysis; Zn Corrosion;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 F. R. McLarnon and E. J. Cairns, J. Electrochem. Soc., 1991, 138(2), 645-664.   DOI
2 D. Linden and T. B. Reddy, Handbooks of batteries, third ed., McGraw-Hill, 2001.
3 P. Arora and Z. Zhang, Chem. Rev., 2004, 104, 4419-4462.   DOI
4 J.-S. Lee, S. T. Kim, R. Cao, N. -S. Choi, M. Liu, K. T. Lee and J. Cho, Adv. Energy Mater., 2011, 1(1), 34-50.   DOI
5 Y. Li and H. Dai, Chem. Soc. Rev., 2014, 43(15), 5257-5275.   DOI
6 A. L. Zhu, D. P. Wilkinson, X. Zhang, Y. Xing, A. G. Rozhin and S. A. Kulinich, J. Energy Storage, 2016, 8, 35-50.   DOI
7 J. Fu, Z. P. Cano, M. G. Park, A. Yu, M. Fowler and Z. Chen, Adv. Mater., 2017, 29(7), 1604685.   DOI
8 H. -I. Kim, E. -J. Kim, S. -J. Kim and H. -C. Shin, J. Appl. Electrochem., 2015, 45(4), 335-342.   DOI
9 J.W. Diggle, A.R. Despic and J. O'M. Bockris, J. Electrochem. Soc., 1969, 116(11), 1503-1514.   DOI
10 R. Wang, D. Kirk and G. Zhang, J. Electrochem. Soc., 2006, 153(5), C357-C364.   DOI
11 J. Park, M. Risch, G. Nam, N. Park, T. J. Shin, S. Park, M. G. Kim, Y. S. Horn and J. Cho, Energy & Environ. Sci., 2017, 10(1), 129-136.   DOI
12 S. Yang and K. Kim, J. Electrochem. Sci. Technol., 2018, 9(4), 339-344.   DOI
13 F. Beck and P. Ruetschi, Electrochim. Acta, 2000, 45(15-16), 2467-2482.   DOI
14 R. Jain, T.C. Adler, F.R. McLarnon, and E.J. Cairns, J. Appl. Electrochem., 1992, 22(11), 1039-1048.   DOI
15 J. S. Chen and L. F. Wang, J. Appl. Electrochem., 1996, 26, 227-230.   DOI
16 J. Yu, H. Yang, X. Ai and X. Zhu, J. Power Sources, 2001, 103(1), 93-97.   DOI
17 K.F. Blurton and A.F. Sammells, J. Power Sources, 1979, 4(4), 263-279.   DOI
18 S.J. Banik, R.Akolkar, J. Electrochem. Soc., 2013, 160(11), D519-523.   DOI
19 S.J. Banik, R.Akolkar, Electrochim. Acta, 2015, 179, 475-481.   DOI
20 M. Azhagurajan, A. Nakata, H. Arai, Z. Ogumi, T. Kajita, T. Itoh, and K. Itaya, J. Electrochem. Soc., 2017, 164(12), A2407-A2417.   DOI
21 T.D. Dirkse and R. Timmer, J. Electrochem. Soc., 1969, 116(2), 162-165.   DOI
22 J. Dobryszycki and S. Biallozor, Corros. Sci., 2001, 43(7), 1309-1319.   DOI
23 R.E.F. Einerhand, W.H.M. Visscher and E. Barendrecht, J. Appl. Electrochem., 1988, 18(6), 799-806.   DOI
24 E. Deiss, F. Holzer and O. Haas, Electrochim. Acta, 2002, 47(25), 3995-4010.   DOI
25 H. -I. Kim and H, -C. Shin, J. Alloys and Compds., 2015, 645, 7-10.   DOI