• 제목/요약/키워드: Secondary barrier

검색결과 110건 처리시간 0.028초

New Approaches for Overcoming Current Issues of Plasma Sputtering Process During Organic-electronics Device Fabrication: Plasma Damage Free and Room Temperature Process for High Quality Metal Oxide Thin Film

  • Hong, Mun-Pyo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.100-101
    • /
    • 2012
  • The plasma damage free and room temperature processedthin film deposition technology is essential for realization of various next generation organic microelectronic devices such as flexible AMOLED display, flexible OLED lighting, and organic photovoltaic cells because characteristics of fragile organic materials in the plasma process and low glass transition temperatures (Tg) of polymer substrate. In case of directly deposition of metal oxide thin films (including transparent conductive oxide (TCO) and amorphous oxide semiconductor (AOS)) on the organic layers, plasma damages against to the organic materials is fatal. This damage is believed to be originated mainly from high energy energetic particles during the sputtering process such as negative oxygen ions, reflected neutrals by reflection of plasma background gas at the target surface, sputtered atoms, bulk plasma ions, and secondary electrons. To solve this problem, we developed the NBAS (Neutral Beam Assisted Sputtering) process as a plasma damage free and room temperature processed sputtering technology. As a result, electro-optical properties of NBAS processed ITO thin film showed resistivity of $4.0{\times}10^{-4}{\Omega}{\cdot}m$ and high transmittance (>90% at 550 nm) with nano- crystalline structure at room temperature process. Furthermore, in the experiment result of directly deposition of TCO top anode on the inverted structure OLED cell, it is verified that NBAS TCO deposition process does not damages to the underlying organic layers. In case of deposition of transparent conductive oxide (TCO) thin film on the plastic polymer substrate, the room temperature processed sputtering coating of high quality TCO thin film is required. During the sputtering process with higher density plasma, the energetic particles contribute self supplying of activation & crystallization energy without any additional heating and post-annealing and forminga high quality TCO thin film. However, negative oxygen ions which generated from sputteringtarget surface by electron attachment are accelerated to high energy by induced cathode self-bias. Thus the high energy negative oxygen ions can lead to critical physical bombardment damages to forming oxide thin film and this effect does not recover in room temperature process without post thermal annealing. To salve the inherent limitation of plasma sputtering, we have been developed the Magnetic Field Shielded Sputtering (MFSS) process as the high quality oxide thin film deposition process at room temperature. The MFSS process is effectively eliminate or suppress the negative oxygen ions bombardment damage by the plasma limiter which composed permanent magnet array. As a result, electro-optical properties of MFSS processed ITO thin film (resistivity $3.9{\times}10^{-4}{\Omega}{\cdot}cm$, transmittance 95% at 550 nm) have approachedthose of a high temperature DC magnetron sputtering (DMS) ITO thin film were. Also, AOS (a-IGZO) TFTs fabricated by MFSS process without higher temperature post annealing showed very comparable electrical performance with those by DMS process with $400^{\circ}C$ post annealing. They are important to note that the bombardment of a negative oxygen ion which is accelerated by dc self-bias during rf sputtering could degrade the electrical performance of ITO electrodes and a-IGZO TFTs. Finally, we found that reduction of damage from the high energy negative oxygen ions bombardment drives improvement of crystalline structure in the ITO thin film and suppression of the sub-gab states in a-IGZO semiconductor thin film. For realization of organic flexible electronic devices based on plastic substrates, gas barrier coatings are required to prevent the permeation of water and oxygen because organic materials are highly susceptible to water and oxygen. In particular, high efficiency flexible AMOLEDs needs an extremely low water vapor transition rate (WVTR) of $1{\times}10^{-6}gm^{-2}day^{-1}$. The key factor in high quality inorganic gas barrier formation for achieving the very low WVTR required (under ${\sim}10^{-6}gm^{-2}day^{-1}$) is the suppression of nano-sized defect sites and gas diffusion pathways among the grain boundaries. For formation of high quality single inorganic gas barrier layer, we developed high density nano-structured Al2O3 single gas barrier layer usinga NBAS process. The NBAS process can continuously change crystalline structures from an amorphous phase to a nano- crystalline phase with various grain sizes in a single inorganic thin film. As a result, the water vapor transmission rates (WVTR) of the NBAS processed $Al_2O_3$ gas barrier film have improved order of magnitude compared with that of conventional $Al_2O_3$ layers made by the RF magnetron sputteringprocess under the same sputtering conditions; the WVTR of the NBAS processed $Al_2O_3$ gas barrier film was about $5{\times}10^{-6}g/m^2/day$ by just single layer.

  • PDF

달팽이 점액이 아토피 피부염 환자의 피부장벽 회복에 미치는 영향 (The Effects of Snail Secretion Filtrate on the damaged skin barrier's recovery of the Atopic dermatitis)

  • 오민지;박성민;김희택
    • 한방안이비인후피부과학회지
    • /
    • 제23권3호
    • /
    • pp.138-153
    • /
    • 2010
  • Purposes : The object of present study is to detect the Effects of Snail Secretion Filtrate and Hyaluronic acid on the skin barrier's recovery of the Atopic dermatitis. Methods : A total of 20 patients who visited Semyung Hanny Oriental Medical Center from september 1st, 2009 to August 31th, 2010 were included in this study. In this study, they were treated with Snail Secretion Filtrate(experimental group) and Hyaluronic acid(control group). For 4 weeks gross examination, hematological examination and instrumentation through skin-ANBT equipment were made before and after the experiments to see how well the products for experimental group act against those for control group in recovering the damaged skin barriers by Atopic dermatitis. Results : 1. In the primary endpoint, SCORAD Index showed a statistically significant decline in both the control group and the experimental group. However, the experimental group showed greater statistical significance than the control group. 2. In the secondary endpoint index of skin hydration, both the control group and the experimental group did not show a statistically significant increase. However, the degree of skin hydration in the experimental group is greater than in the control group. 3. In global assessment of efficacy, it was higher in the experimental group than in the control group for both the subjects and the researchers. 4. To evaluate the safety of the products for the human body, hematological examination and hematological biochemical examination were conducted; both the control group and the experimental group showed no abnormal level. Therefore, the safety of the products, if used for so long a time, proved to be safe for the human body. 5. Product satisfaction was higher in the experimental group than in the control group. Conclusions : According to above experiments, Snail Secretion Filtrate was effective on the Atopic dermatitis.

멤브레인 형 섬유강화 복합재료의 열팽창 이방성을 고려한 열 기계적 특성 분석 (Analysis of Thermomechanical Properties Considering the Thermal Expansion Anisotropy of Membrane-Type Fiber-Reinforced Composite Material)

  • 정연제;김희태;김정대;오훈규;김용태;박성보;이제명
    • 대한조선학회논문집
    • /
    • 제58권1호
    • /
    • pp.17-23
    • /
    • 2021
  • The membrane-type Liquefied Natural Gas (LNG) cargo tank is equipped with a double barrier to seal the LNG, of which the secondary barrier serves to prevent LNG leakage and mainly uses fiber-reinforced composite materials. However, the composite materials have thermal expansion anisotropy, which deteriorates shape distortion and mechanical performance due to repeated thermal loads caused by temperature changes between cryogenic and ambient during the unloading of LNG. Therefore, in this study, the longitudinal thermal expansion characteristics of the composite materials were obtained using a vertical thermo-mechanical analyzer, and the elastic modulus was obtained through the tensile test for each temperature to perform thermal load analysis for each direction. This is considered that it is useful to secure reliability from the viewpoint of the design of materials for a LNG cargo hold.

상지상식 멤브레인 액화천연가스 저장탱크의 안전성 향상 방안 (A study on the safety improvement of above ground membrane LNG storage tank)

  • 이승림;김한상
    • 에너지공학
    • /
    • 제21권4호
    • /
    • pp.339-345
    • /
    • 2012
  • 최근 안정성 및 경제성 측면에서 완전방호식 LNG 저장탱크(full-containment LNG storage tank)의 대안으로 검토되고 있는 멤브레인 LNG 저장탱크(membrane LNG storage tank)에 대해서 정량적 위험성 평가 방법(QRA; Quantitative Risk Analysis)과 유한요소해석법(FEM; Finite Element Method)을 통하여 안전성 평가를 수행하였다. 본 논문에서는 유한요소해석법(FEM)을 통한 구조안전성 평가에서 140,000 $m^3$ 저장용량을 갖는 LNG 저장탱크의 두 가지 모델은 저장탱크 시스템에 대한 강도 안전성과 누출 안전성 측면에서 해석한 결과에 의하면 모두 안전한 것으로 평가되었다. 또한, 고장수목분석(FTA; Fault Tree Analysis)을 통하여 멤브레인 LNG 저장탱크에 안전성을 강화하기 위해 설계 초기모델에 안전장치로서 멤브레인 바닥부의 충격흡수장치(impact absorber structure), 1차 멤브레인 저장 파손 시 콘크리트 외부탱크(outer tank) 코너부(corner part)의 열충격(thermal stress)을 감소시킬 수 있는 열보호장지(secondary barrier) 및 펌프 낙하 시 안전장치로서 펌프캐쳐(pump catcher)를 보완하고 평가하였다. 결론적으로 개선된 멤브레인 LNG 저장탱크는 안전성 측면에서 완전방호식 LNG 저장탱크와 대등하다는 결론을 도출할 수 있었다.

A Study on the Chemical Cleaning Process and Its Qualification Test by Eddy Current Testing

  • Shin, Ki Seok;Cheon, Keun Young;Nam, Min Woo;Min, Kyong Mahn
    • 비파괴검사학회지
    • /
    • 제33권6호
    • /
    • pp.511-518
    • /
    • 2013
  • Steam Generator (SG) tube, as a barrier isolating the primary coolant system from the secondary side of nuclear power plants (NPP), must maintain the structural integrity for the public safety and their efficient power generation. So, SG tubes are subject to the periodic examination and the repairs if needed so that any defective tubes are not in service. Recently, corrosion related degradations were detected in the tubes of the domestic OPR-1000 NPP, as a form of axially oriented outer diameter stress corrosion cracking (ODSCC). According to the studies on the factors causing the heat fouling as well as developing corrosion cracking, densely scaled deposits on the secondary side of the SG tubes are mainly known to be problematic causing the adverse impacts against the soundness of the SG tubes [1]. Therefore, the processes of various cleaning methods efficiently to dissolve and remove the deposits have been applied as well as it is imperative to maintain the structural integrity of the tubes after exposing to the cleaning agent. So qualification test (QT) should be carried out to assess the perfection of the chemical cleaning and QT is to apply the processes and to do ECT. In this paper, the chemical cleaning processes to dissolve and remove the scaled deposits are introduced and results of ECT on the artificial crack specimens to determine the effectiveness of those processes are represented.

XPS를 이용한 Sb-doped $SnO_2$ 투명전도막의 특성 분석 (Characterization of transparent Sb-doped $SnO_2$ conducting films by XPS analysis)

  • 임태영;김창열;심광보;오근호
    • 한국결정성장학회지
    • /
    • 제13권5호
    • /
    • pp.254-259
    • /
    • 2003
  • Sol-gel dip coating법으로 soda lime glass 기판 위에 ATO(antimony-doped tin oxide) 투명전도막을 제조할 때, 기판 위에 형성된 $SiO_2$ barrier 층 및 $N_2$ gas annealing 에 따른 광투과율 및 전기적 특성에 대한 효과를 정량적으로 측정하고, XPS(X-ray photoelectron spectroscopy) 분석을 통해 고찰하였다. $SiO_2$ barrier층을 갖는 glass 기판 위에 코팅된400 nm 두께의 ATO 박막을 질소분위기에서 annealing한 결과, 광 투과율은 84%그리고 전기저항은 약 $5.0\times 10^{-3}\Omega \textrm{cm}$로 측정되었다 XPS 분석결과 이러한 우수한 전기전도성은 $SiO_2$ buffer층이 glass 기판으로부터 Na 이온의 확산을 막아 ATO막 내에 $Na_2SnO_3$ 및 SnO와 같은 2차상 불순물의 형성을 억제하여 막 내부의 Sb의 농도 및 $Sb^{5+}/Sb^{3+}$ 비를 증가시키고, $N_2$ annealing은 $Sb^{5+}$ 도 환원시키지만 $Sn^{4+}$를 환원시키는 효과가 크게 작용하였기 때문으로 사료된다.

도로소음원에 대한 방음패널 형상별 반사소음 저감효과 (A Reduction Effect in Noise Reflection by Different Shapes of Soundproofing-panel)

  • 김일호;박태호;장서일;이혜인
    • 대한환경공학회지
    • /
    • 제37권2호
    • /
    • pp.120-125
    • /
    • 2015
  • 도시화의 가속화와 더불어 도심의 교통량의 증가로 도로소음피해를 최소화하기 위하여 방음벽의 설치 수요가 증가하고 있다. 설치되고 있는 여러 형태의 방음벽 중, 반사형 방음패널의 경우 불투명 방음패널과 달리 시야를 가리지 않으므로 방음시설을 요구하는 거주자들에게 인기를 얻고 있다. 하지만 반사형 방음패널의 경우, 반사음에 의한 2차 피해를 유발시켜 피해를 줄일 수 있는 방음벽 개발의 필요성이 대두되고 있다. 이에 본 연구에서는 반사형 방음패널의 전면형상 및 기하학적 형태를 변화시켜 반사음의 전달을 최소화 시킬 수 있는 형상을 연구하였다. 일반형 반사형 방음패널과 형상별 방음패널의 반사소음 저감 효과를 비교 한 결과, 곡선형 방음패널이 1.5 dB의 소음저감 효과가 있었다. 또한, 반사음의 증가 또는 감소는 형상별 설계인자에 따라 변화하는 것을 알 수 있었다. 이러한 결과는 방음벽 전면 현상에 따른 반사소음의 저감 기술의 가능성을 보여주는 결과라고 판단된다.

임상간호사의 연구활용 장애에 대한 인식 (Clinical Nurses' Perception on Barriers to Research Utilization)

  • 강윤희;양인숙
    • 기본간호학회지
    • /
    • 제22권2호
    • /
    • pp.198-206
    • /
    • 2015
  • Purpose: Although previous studies reported that actual application of research findings into the clinical setting was still poor, research utilization is a major component for implementation of Evidence-based Nursing Practice (EBNP). This study was conducted to identify the barriers to research utilization in clinical nurses. Methods: A descriptive survey design was used. Participants were 392 clinical nurses who were interviewed using a structured questionnaire. Results: Priority factors of barriers were setting, communication, research, and nurses. Five of the top 10 barriers were related to 'setting.' The first barrier was difficulty in the comprehension of statistical analyses. Nurses who worked in secondary hospitals and regularly read research articles perceived significantly lower barriers to research utilization compared with other nurses. There were statistically differences in research utilization among the groups by level of searching skills related to research documents and degree of understanding of EBNP. Conclusion: The study findings identified the top barriers to research utilization and key factors for nursing administrators and educators to consider in developing strategies to facilitate the utilization of research findings in clinical settings.

High-Voltage AlGaN/GaN High-Electron-Mobility Transistors Using Thermal Oxidation for NiOx Passivation

  • Kim, Minki;Seok, Ogyun;Han, Min-Koo;Ha, Min-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권5호
    • /
    • pp.1157-1162
    • /
    • 2013
  • We proposed AlGaN/GaN high-electron-mobility transistors (HEMTs) using thermal oxidation for NiOx passivation. Auger electron spectroscopy, secondary ion mass spectroscopy, and pulsed I-V were used to study oxidation features. The oxidation process diffused Ni and O into the AlGaN barrier and formed NiOx on the surface. The breakdown voltage of the proposed device was 1520 V while that of the conventional device was 300 V. The gate leakage current of the proposed device was 3.5 ${\mu}A/mm$ and that of the conventional device was 1116.7 ${\mu}A/mm$. The conventional device exhibited similar current in the gate-and-drain-pulsed I-V and its drain-pulsed counterpart. The gate-and-drain-pulsed current of the proposed device was about 56 % of the drain-pulsed current. This indicated that the oxidation process may form deep states having a low emission current, which then suppresses the leakage current. Our results suggest that the proposed process is suitable for achieving high breakdown voltages in the GaN-based devices.

Syntheses of Amide Bonds and Activations of N-C(sp3) Bonds

  • Hong, Jang-Hwan
    • 통합자연과학논문집
    • /
    • 제10권4호
    • /
    • pp.175-191
    • /
    • 2017
  • In organic chemistry amide synthesis is performed through condensation of a carboxylic acid and an amine with releasing one equivalent of water via the corresponding ammonium carboxylate salt. This method is suffering from tedious processes and poor atom-economy due to the adverse thermodynamics of the equilibrium and the high activation barrier for direct coupling of a carboxylic acid and an amine. Most of the chemical approaches to amides formations have been therefore being developed, they are mainly focused on secondary amides. Direct carbonylations of tertiary amines to amides have been an exotic field unresolved, in particular direct carbonylation of trimethylamine in lack of commercial need has been attracted much interests due to the versatile product of N,N-dimethylacetamide in chemical industries and the activation of robust N-C($sp^3$) bond in tertiary amine academically. This review is focused mainly on carbonylation of trimethylamine as one of the typical tertiary amines by transition metals of cobalt, rhodium, platinum, and palladium including the role of methyl iodide as a promoter, the intermediate formation of acyl iodide, the coordination ability of trimethylamine to transition metal catalysts, and any possibility of CO insertion into the bond of Me-N in trimethylamine. In addition reactions of acyl halides as an activated form of acetic acid with amines are reviewed in brief since acyl iodide is suggested as a critical intermediate in those carbonylations of trimethylamine.