• Title/Summary/Keyword: Secondary Wall

Search Result 442, Processing Time 0.03 seconds

Numerical Analysis on the Low Momentum Fluid Flow Characteristics in Centrifugal Pump Impeller (원심 펌프 회전차 내부의 저 운동량 유동특성에 관한 수치적 연구)

  • 김세진;김동원;김윤제
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1999.05a
    • /
    • pp.151-157
    • /
    • 1999
  • In this study, tile characteristics of three dimensional flow fields in centrifugal flump impeller are investigated by numerically. Detailed analysis and understanding of flow field in centrifugal pump are very important to predict performance of components. The three dimensional viscous fluid flow in centrifugal pump is distingushed isentropic process region from irreversible process region by wall shear effect, secondary flow, centrifugal and Coriolis forces, variation of boudary layers. Development of low momentum region by viscous fluid flow in the centrifugal impeller causes stall and blockage which is irreversible process region, and resulting in decrease of the performance and efficiency of centrifugal pump. Especially, the result is that Coriolis and centrifugal forces are most powerful factors which are increasing the irreversible region.

  • PDF

Estimation of yield strength due to neutron irradiation in a pressure vessel of WWER-1000 reactor based on the correction of the secondary displacement model

  • Elaheh Moslemi-Mehni;Farrokh Khoshahval;Reza Pour-Imani;M.A. Amirkhani-Dehkordi
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3229-3240
    • /
    • 2023
  • Due to neutron radiation, atomic displacement has a significant effect on material in nuclear reactors. A range of secondary displacement models, including the Kinchin-Pease (K-P), Lindhard, Norgett-Robinson-Torrens (NRT), and athermal recombination-corrected displacement per atom (arc-dpa) have been suggested to calculate the number of displacement per atom (dpa). As neutron elastic interaction is the main cause of displacement damage, the focus of the current study is to calculate the atomic displacement caused by the neutron elastic interaction in order to estimate the exact amount of yield strength in a WWER-1000 reactor pressure vessel. To achieve this purpose, the reactor core is simulated by MCNPX code. In addition, a program is developed to calculate the elastic radiation damage induced by the incident neutron flux (RADIX) based on different models using Fortran programming language. Also, due to non-elastic interaction, the displacement damage is calculated by the HEATR module of the NJOY code. ASME E-693-01 standard, SPECTER, NJOY codes, and other pervious findings have been used to validate RADIX results. The results showed that the RADIX(arc-dpa)/HEATR outputs have appropriate accuracy. The relative error of the calculated dpa resulting from RADIX(arc-dpa)/HEATR is about 8% and 46% less than NJOY code, respectively in the ¼ and ¾ vessel wall.

Dynamic Analysis of a Reciprocating Compression Mechanism Considering Hydrodynamic Forces

  • Kim, Tae-Jong
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.844-853
    • /
    • 2003
  • In this paper, a dynamic analysis of the reciprocating compression mechanism of a small refrigeration compressor is performed. In the problem formulation of the mechanism dynamics, the viscous frictional force between the piston and the cylinder wall is considered in order to determine the coupled dynamic behaviors of the piston and the crankshaft. Simultaneous solutions are obtained for the equations of motion of the reciprocating mechanism and the time-dependent Reynolds equations for the lubricating film between the piston and the cylinder wall and for the oil films on the journal bearings. The hydrodynamic forces of the journal bearings are calculated by using a finite bearing model along with the Gumbel boundary condition. A Newton-Raphson procedure is employed in solving the nonlinear equations for the piston and crankshaft. The developed computer program can be used to calculate the complete trajectories of the piston and the crankshaft as functions of the crank angle under compressor-running conditions. The results explored the effects of the radial clearance of the piston, oil viscosity, and mass and mass moment of inertia of the piston and connecting rod on the stability of the compression mechanism.

Operative Management in a Patient with Scapulothoracic Bursitis

  • Son, Shin Ah;Lee, Deok Heon;Lee, Young Ok;Lee, Sang Cjeol;Kim, Kun Jik;Cho, Joon Yong
    • Journal of Chest Surgery
    • /
    • v.46 no.6
    • /
    • pp.486-489
    • /
    • 2013
  • Scapulothoracic bursitis, an uncommon lesion, has been reported to be a painful disorder of scapulothoracic articulation. The articulation may become inflamed secondary to trauma when overused because of sports or work that requires repetitive or constant movement of the scapula against the posterior chest wall. The bursitis usually appears as a growing mass at the scapulothoracic interface and is often confused with a soft tissue tumor. We report on a patient with scapulothoracic bursitis who underwent surgical excision.

A Study on the Safety of Small LPG Storage Tanks at External Fires (외부화재시 LPG 소형저장탱크의 안전성에 관한 연구)

  • Yim, Ji-Pyo;Ma, Byung-Chol;Chung, Chang-Bock
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.4
    • /
    • pp.64-72
    • /
    • 2015
  • The purpose of this study is to study the safety of a small LPG storage tank with a capacity less than 3 ton when it is exposed to an external fire. First, simulation studies were carried out using ASPEN Plus and PHAST to demonstrate that overpressurization in the tank can be relieved by discharging the LPG through an adequately sized safety valve, but the release may lead to the secondary risk of fire and explosion around the tank. Next, the temporal variations of the temperatures of the lading and tank wall were obtained using AFFTAC, which showed that the tank wall adjacent to the vapor space could be overheated in about 11 min to such a point that the weakened strength might cause a rupture of the tank and subsequent BLEVE. The consequences of the BLEVE were estimated using PHAST. Finally, several practical measures for preventing the hazards of overheating were suggested, including an anti-explosion device, sprinkling system, insulation, heat-proof coating, and enhanced safety factor for tank fabrication. The effectiveness of these measures were examined by simulations using AFFTAC and ASPEN Plus.

Three-Dimensional Flow Visualization of Pulsatile Flow in a Branching Model using the PIV System (PIV를 이용한 분지관모델내 3차원 맥동유동의 가시화)

  • Sung, Sun-Kyung;Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.748-753
    • /
    • 2001
  • The objective of the present study is to visualize the pulsatile flow fields by using three-dimensional computer simulation and the PIV system. A closed flow loop system was built for the steady and unsteady experiments. The Harvard pulsatile pump was used to generate the pulsatile pressure and velocity waveforms. Conifer powder as the tracing particles was added to water to visualize the flow field. Two consecutive particle images were captured by a CCO camera for the image processing at several cross section. The range validation and the area interpolation methods were used to obtain the final velocity vectors with high accuracy. The finite volume predictions were used to analyze three-dimensional flow patterns in the bifurcation model. The results of the PIV experiment and the computer simulation are in good agreement and the results show the recirculation zones and formation of the paired secondary flow distal to the apex of the bifurcated model. The results also show that the branch flow is pushed strongly to the inner wall due to the inertial force effect and helical motions are generated as the flow proceeds toward the outer wall.

  • PDF

An Experimental Study on the Effect of Fluid Flow and Heat Transfer Characteristics by the Longitudinal Vortices (종방향 와동이 유체유동 및 열전달 특성에 미치는 영향에 관한 실험적 연구)

  • 양장식;김은필
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.9
    • /
    • pp.843-852
    • /
    • 2000
  • The flow characteristics and the heat transfer rate on a surface by interaction of a pair of vortices were studied experimentally. The test facility consisted of a boundary-layer wind tunnel with a vortex introduced into the flow by half-delta winglet protruding from the surface. In order to control the strength of the longitudinal vortices, the angles of attack of the vortex generators were varied from $\pm20\;degree\;to\;\pm45$ degree, but spacings between the vortex generators were fixed to 4 cm. The 3-dimensional mean velocity measurements were made using a five-hole pressure probe. Heat transfer measurements were made using the thermochromatic liquid to provide the local distribution of the heat transfer coefficient. By using the method mentioned above, the following conclusions were obtained from the present experiment. The boundary layer was thinned in the regions where the secondary flow was directed toward the wall and thickened where it was directed away from the wall. The peak augmentation of the local heat transfer coefficient occurred in the downwash region near the point of minimum boundary-layer thickness.

  • PDF

Investigation on the Developing Turbulent Flow In a Curved Duct of Square Cross-Section Using a Low Reynolds Number Second Moment Turbulence Closure (2차모멘트 난류모형을 이용한 정사각 단면 곡덕트 내 발달하는 난류유동 변화에 대한 고찰)

  • Chun, Kun-Ho;Choi, Young-Don;Shin, Jong-Keun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.8
    • /
    • pp.1063-1071
    • /
    • 1999
  • Fine grid calculations are reported for the developing turbulent flow in a curved duct of square cross-section with a radius of curvature to hydraulic diameter ratio ${\delta}=Rc/D_H=3.357 $ and a bend angle of 720 deg. A sequence of modeling refinements is introduced; the replacement of wall function by a fine mesh across the sublayer and a low Reynolds number algebraic second moment closure up to the near wall sublayer in which the non-linear return to isotropy model and the cubic-quasi-isotropy model for the pressure strain are adopted; and the introduction of a multiple source model for the exact dissipation rate equation. Each refinement is shown to lead to an appreciable improvement in the agreement between measurement and computation.

Parametric Sensitivity of the Flow Characteristics on Pulverized Coal Gasification (유동변수들이 석탄가스화에 미치는 민감도에 대한 수치적연구)

  • Cho, Han-Chang;Shin, Hyun-Dong
    • Journal of the Korean Society of Combustion
    • /
    • v.4 no.1
    • /
    • pp.1-15
    • /
    • 1999
  • In order to analyze the sensitivity on the pulverized coal flames of the several variables, a numerical study was conducted at the gasification process. Eulerian approach is used for the gas phase, whereas lagrangian approach is used for the solid phase. Turbulence is modeled using the standard $k-{\varepsilon}$ model. The turbulent combustion incorporates eddy dissipation model. The radiation was solved using a Monte-Carlo method. One-step two-reaction model was employed for the devolatilization of Kideco coal. In pulverized flame of long liftoff height, the initial turbulent intensity seriously affects the position of flame front. The radiation heat transfer and wall heat loss ratio distort the temperature distributions along the reactor wall, but do not influence the reactor performance such as coal conversion, residence time and flame front position. The primary/secondary momentum ratio affects the position of flame front, but the coal burnout is only slightly influenced. The momentum ratio is a variable only associated with the flame stabilization such as flame front position. The addition of steam in the reactor has a detrimental effect on all the aspects, particularly reactor temperature and coal burnout.

  • PDF

Surgical Treatment of Congenital Chest Wall Defects (선천성 흉벽질환의 교정)

  • 김주현
    • Journal of Chest Surgery
    • /
    • v.20 no.1
    • /
    • pp.161-170
    • /
    • 1987
  • Fifty-nine cases of congenital chest wall defects experienced in the department of thoracic surgery of Seoul National University Hospital were analyzed and the relevant literatures were reviewed. They are 52 cases of funnel chest, 3 cases of pigeon breast, one case of superior sternal fissure, one case of costochondral incurvation, one case of Cantrell`s pentalogy, and one case of Poland`s syndrome. Funnel chest affected males more frequently than females by 44 to 8. All of the funnel deformities were corrected by Ravitch operation or its modification except one which was the first case of this series and was corrected by a sterno-turnover. Two cases required a mechanical ventilation for 3 days and 5 days respectively. Four minor complications which were two cases of skin wound infection and 2 cases of fluid accumulation were noted. Skin would infection was repaired by a secondary closure and fluid accumulation was treated by aspiration only. The result are all excellent without recurrence or reoperation. In 3 cases of pigeon breast, they were treated by subperichondrial resection of all of the involved costal cartilages and shortening their course with reefing sutures in the perichondrium with excellent result. The superior sternal fissure which was combined by a ventricular septal defect was treated by a simple wire closure with a good result. The costochondral incurvation was corrected by subperichondrial resection of deformed cartilages and a rib graft removed from the contralateral normal side. The Poland syndrome and the Cantrell`s pentalogy was already presented previously.

  • PDF