• Title/Summary/Keyword: Secondary Flow and Loss

Search Result 116, Processing Time 0.023 seconds

Tip Gap Flow and Aerodynamic Loss Generation over a Cavity Squealer Tip with the Variation of Pressure-Side Opening Length in a Turbine Cascade (스퀼러팁의 압력면 개방길이 변화에 따른 터빈 익렬 팁간극 유동 특성 및 압력손실)

  • Cheon, Joo Hong;Lee, Sang Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.5-10
    • /
    • 2012
  • The effect of pressure-side opening length on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-tochord ratio of $h_{st}/c$ = 5.05% and h/c = 2.0% respectively. The opening length-to-camber ratio is changed to be $OL/c_c$ = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, and 0.7 The results show that longer OL leads not only to weaker secondary flow but also to lower aerodynamic loss in the tip leakage vortex region, while it significantly widens the area with high aerodynamic loss in the passage vortex region. The aerodynamic loss coefficient mass-averaged all over the measurement plane is kept almost constant for $0.0{\leq}OL/c_c{\leq}0.3$, whereas it increases rapidly for $OL/c_c$ > 0.3 in proportion to $OL/c_c$. There is little deterioration in flow turning with increasing $OL/c_c$.

An Investigation of Angled Discrete Rib-Turbulators for Cooling Enhancement of Gas Turbine Blades (가스 터빈 블레이드 냉각 성능 향상을 위한 경사요철의 단락 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.782-789
    • /
    • 2001
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90 and 60 deg are selected with $e/D_{h}=0.08$. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. As a result, the fairly uniform heat/mass transfer distributions are obtained with two row gaps.

  • PDF

Experimental Study on the Three Dimensional Unsteady Flow in a Counter-Rotating Axial Flow Fan (엇회전식 축류팬의 3차원 비정상 유동에 관한 실험적 연구)

  • Park, Hyun-Soo;Cho, Lee-Sang;Cho, Jin-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.9
    • /
    • pp.1005-1014
    • /
    • 2004
  • Experiments were done for the three dimensional unsteady flow in a counter-rotating axial flow fan under peak efficiency operating condition. Flow fields in a counter rotating axial flow fan were measured at cross-sectional planes of the upstream and downstream of each rotor. Cross sectional flow patterns were investigated through the acquired data by the 45$^{\circ}$ inclined hot-wire. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential velocity vector plot. It has been found that the radial and tangential velocity components disappeared, while the axial velocity component highly increased as soon as the tip vortex was generated. It has been observed that secondary flow and turbulence intensity which were increased by the front rotor were dissipated passing through the rear rotor. As the result the energy loss of the counter rotating axial flow fan decreased at the downstream of rear rotor. Also, it has been verified that tip vortex pattern of the rear rotor was dampened because the tip vortex generated by front rotor was mixed with that of the rear rotor.

Effects of Corrugation Angle on Local Heat/Mass Transfer in Wavy Duct of Heat Exchanger (열교환기 내부 유로의 꺾임각 변화에 따른 국소 열/물질전달 특성 고찰)

  • Jang, In-Hyuk;Hwang, San-Dong;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.7
    • /
    • pp.789-799
    • /
    • 2004
  • An experimental study is conducted to investigate the effects of duct corrugation angle on heat/mass transfer characteristics in wavy ducts of a primary surface heat exchanger application. Local heat/mass transfer coefficients on the wavy duct sidewalls are determined by using a naphthalene sublimation technique. The corrugation angles(${\alpha}$) of the wavy ducts are 145$^{\circ}$, 130$^{\circ}$, 115$^{\circ}$ and 100$^{\circ}$. And the Reynolds numbers based on the duct hydraulic diameter vary from 300 to 3,000. The results show that at the low Re(Re $\leq$1000), the secondary vortices called Taylor-Gortler vortices perpendicular to the main flow direction are generated due to effect of duct curvature. By these secondary vortices, high heat/mass transfer regions are formed on both pressure-side and suction-side walls. At the high Re(Re $\geq$ 1000), these secondary flows are vanished with helping flow transition to turbulent flow and the regions which show high heat/mass coefficients by flow reattachment are formed on suction side. As corrugation angle decreases, the local peak Sh induced by Taylor-Gortler vortices increase at Re $\leq$1000. At high Re(Re $\geq$ 1000), by the existence of different kind of secondary flows called Dean vortices, non-uniform Sh distribution appears along spanwise direction at the narrow corrugation angle (${\alpha}$=100$^{\circ}$). Average Sh also increase by the enhanced effect of secondary vortices and flow reattachment. More pumping power (pressure loss) is required with the smaller corrugation angle due to the enhancement of flow instability.

Effect of the Dihedral Stator on the Loss in a Transonic Axial Compressor (상반각 정익이 천음속 축류 압축기 손실에 미치는 영향에 관한 연구)

  • Hwang, Dongha;Choi, Minsuk;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.5
    • /
    • pp.5-12
    • /
    • 2015
  • This paper presents a numerical investigation of the effect of the dihedral stator on the loss in a transonic axial compressor. Four stator geometries with different stacking line variables are tested in the flow simulations over the whole operating range. It is found that a large shroud loss at the rotor outlet and the subsequent shroud corner separation in the stator passage occur at low mass flow rate. The hub dihedral stator and bowed blade generate unexpected hub-corner-separation, thereby causing a large total pressure loss over the entire operating range. However, the corresponding blockage forces the high momentum flow near the hub to divert toward the upper part of the passage suppressing the negative axial velocity region. The dihedral stator increases deflection angle and secondary vorticity near the endwall where the dihedral is applied. As a result, the endwall loss which is related to the endwall relative velocity decreases.

Effect of Turbine Blade tip shape on the Total Pressure Loss of a Turbine Cascade (블레이드 팁 형상이 터빈 캐스케이드 전압 손실에 미치는 영향에 대한 연구)

  • Lee, Ki-Seon;Park, Seoung-Duck;Noh, Young-Chul;Kim, Hak-Bong;Kwak, Jae-Su;Jun, Yong-Min
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.2
    • /
    • pp.39-45
    • /
    • 2009
  • Leakage flow through turbine blade tip gap causes strong leakage vortex near the blade suction side and induces large aerodynamic losses. In this study, the conventional plane tip and various squealer tip blades were tested in a linear cascade in order to measure the effect of the tip shape on the total pressure loss. Three tip gap clearances of 0.6%, 1.3%, and 2.0% of blade span were tested. Flow measurement was conducted at one chord downstream from the trailing edge with a five-hole probe. Results showed that the leakage vortex was stronger than passage vortex and the mass averaged overall total pressure loss through the cascade was the lowest for suction side blade tip case. For all tested cases, the area averaged overall total pressure loss was increased as the tip clearance increased.

Study of the Supersonic Ejector-Diffuser System with a Mixing Guide Vane at the Inlet of Secondary Stream

  • Kong, Fanshi;Lijo, Vincent;Kim, Heuy-Dong;Jin, Yingzi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.182-186
    • /
    • 2011
  • Ejector-diffuser system has long been used in many diverse fields of engineering applications and it has advantages over other fluid machinery, because of no moving parts and structural simplicity. This system makes use of high-pressure primary stream to entrain the low-pressure secondary stream through pure shear actions between two streams. In general, the flow field in the ejector-diffuser system is highly complicated due to turbulent mixing, compressibility effects and sometimes flow unsteadiness. A fatal drawback of the ejector system is in its low efficiency. Many works have been done to improve the performance of the ejector system, but not yet satisfactory, compared with that of other fluid machinery. In the present study, a mixing guide vane was installed at the inlet of the secondary stream for the purpose of the performance improvement of the ejector system. A CFD method has been applied to simulate the supersonic flows inside the ejector-diffuser system. The present results obtained were validated with existing experimental data. The mixing guide vane effects are discussed in terms of the entrainment ratio, total pressure loss as well as pressure recovery.

  • PDF

Developing the flow quality in an wing-body junction flow by the optimizing method (최적화 기법을 이용한 일반적인 날개 형상에서의 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.303-307
    • /
    • 2009
  • Secondary flow losses can be as high as $30{\sim}50%$ of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and optimizes the shape of leading-edge fence with the shape factors, such as the installed height, length, width, and thickness of the fence as the design variables. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure loss coefficient was improved about 7.5 % than the baseline case.

  • PDF

Experimental Study on Flows within an Unshrouded Centrifugal Impeller Passage(II)-on the Influence of Flow Rate- (개방형 원심회전차의 내부유동장에 관한 실험적 연구(2)-유량에 따른 영향-)

  • Kim, Seong-Won;Jo, Gang-Rae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.10
    • /
    • pp.3251-3261
    • /
    • 1996
  • Flows were measured in an unshrouded centrifugal impeller. By using a single slanted hot-wire probe and a Kiel probe mounted on the impeller hub disk, the 3-D relative velocities and the rotary stagnation pressures were measured in seven circumferential planes between the inlet and outlet of the impeller rotating at 700 rpm, which diameter is 0.39 meter, and the static pressures and the slip factor at the impeller outlet were estimated from the measured values. Measurements were made for three flow rates corresponding to zero incidence and two others with the greater and the smaller one than zero. From the measured data in these flow rates, the followings were investigated in the impeller passage, the variation of the primary and secondary flows, the leakage flows, the wake's position and its size, the static pressure rise and the loss production mechanism. Furthermore the static pressure and the slip factor were compared with the results of inviscid Quasi-3D calculation.

Numerical Study on the Unsteady Flow Characteristics under the Effect of Blade Leading Edge Modification in the 1st Stage of Axial Turbine (1단 터빈 내 앞전 변형의 영향 하에 공력 특성에 대한 비정상 수치해석적 연구)

  • Kim, Dae-Hyun;Min, Jae-Hong;Chung, Jin-Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.12 no.1
    • /
    • pp.22-27
    • /
    • 2009
  • The important problems that arise in the design and performance of the axial flow turbine are the prediction and control of secondary flows. Some progresses have been made on understanding flow conditions that occur when the inlet endwall boundary layer separates at the point in the endwall and rolls up into the horseshoe vortex. And the flows though an axial turbine tend to be extremely complex due to its inherent unsteady and viscous phenomena. The passing wakes generated from the trailing edge of the stator make an interaction with the rotor. Unsteady flow should be considered rotor/stator interactions. The main purpose of this research is control of secondary flow and improvement efficiency in turbine by leading edge modification in unsteady state. When the wake from the stator ran into the modified leading edge of the rotor, the leading edge generated the weak pressure fluctuation by complex passage flows. In conclusion, leading edge modification(bulb2) results in the reduced total pressure loss in the flow field.