• Title/Summary/Keyword: Secondary Flow and Loss

Search Result 116, Processing Time 0.028 seconds

A Study on the Pressure Loss in Helically Coiled Tubes (나선코일 튜브 내에서의 압력손실에 관한 연구)

  • Han, K.I.;Bark, J.U.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.6
    • /
    • pp.155-165
    • /
    • 1998
  • The resistance coefficient and heat transfer performance are studied for the turbulent water flow in a smooth coiled tube having variable curvature ratios and a corrugated-coiled tube having a ratio of coil to tube diameter of 22. Experiments are carried out for the fully developed turbulent flow of water in tube coils on the uniform wall temperature condition. This work is limited to tube coils of R/a between 22 and 60 and Reynolds numbers from 13000 to 53000. The tube having a ratio of coil to tube diameter of 27 among the 3 smooth tube coils shows the best heat transfer performance. A corrugated-coiled tube(R/a=60) shows more excellent performance than a smooth coiled tub (R/a=60) at a similar curvature ratio. The friction factor f is sensitive to changes in the velocity profile caused by a temperature gradient. Allowance was made for the pressure loss in the short inlet and outlet lengths and due to the presence of the thermocouple inlet and outlet as a result of separate experimental on a straight tube. It is to be expected that the allowance at the exit will be somewhat too low because of secondary flow effects carried over from the coil.

  • PDF

Augmented heat transfer in a rectangular duct with angled ribs (사각 덕트내 요철의 각도 변화에 따른 열전달 특성)

  • U, Seong-Je;Kim, Wan-Sik;Jo, Hyeong-Hui
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.4
    • /
    • pp.530-541
    • /
    • 1998
  • Heat transfer augmentation in a rib-roughened duct is affected by the rib configurations, such as rib height, angle of attack, shape, rib to rib pitch, and aspect ratio of a duct. These have been the main subjects in studying the average heat transfer and the friction loss of the fully developed flow. Investigating distributions of local heat transfer coefficients and flow patterns in a duct with the rib turbulators is necessary to find the characteristics of heat transfer augmentation and to decide the optimal configurations of ribs. In the present study the numerical analyses and the mass transfer experiments are performed to understand the flow through a rib roughened duct and the heat transfer characteristics with various angles of attack of ribs. A pair of counter-rotating secondary flow in a duct has a main effect on the lateral distributions of local mass transfer coefficients. Downwash of the rotating secondary flow, reattachment of main flow between ribs and the vortices near ribs and wall enhanced the mass transfer locally up to 8 times of that in case of the duct without ribs.

Secondary flows through an impeller of centrifugal compressor at design and off-design conditions (설계점 및 탈설계점에서의 원심압축기 회전차 내부 2차유동)

  • Choe, Yeong-Seok;Gang, Sin-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.11
    • /
    • pp.3573-3588
    • /
    • 1996
  • The flow through a centrifugal compressor impeller was calculated using the 3-dimensional Navier-Stokes solution method. A control volume method based on a rotating curvilinear coordinate system was used to solve the time-averaged Navier-Stokes equations, and a standard k-.epsilon. model was used to obtain eddy viscosity. Numerical results and experimental data were compared for the overall performance of the impeller, the pressure distributions along the shroud wall and the detailed flowfields at the design and off-design conditions, which showed good coincidence. The flow through the impeller is complex with the curvature of the streamlines and rotation. The development of secondary flows and the jet-wake flow characteristics, which is the main source of flow loss, was discussed. Calculation results show quite different patterns as the flow rate changes.

Three-Dimensional Flow and Aerodynamic Loss Downstream of Turbine Rotor Blade with a Cutback Cavity Squealer Tip (터빈 동익 컷백스퀼러팁 하류에서의 3차원 유동 및 압력손실)

  • Kim, Seon-Ung;Lee, Sang-Woo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.1
    • /
    • pp.48-54
    • /
    • 2011
  • The effect of channel cutback on three-dimensional flow fields and aerodynamic losses downstream of a cavity squealer tip has been investigated in a turbine rotor cascade for the squealer rim height-to-chord ratio and tip gap height-to-chord ratio of $h_{st}/c$ = 5.51% and h/c = 2.0% respectively. The cutback length-to-camber ratio is changed to be $CB/c_c$ = 0.0, 0.1, 0.2 and 0.3. The results show that longer cutback delivers not only stronger secondary flow but also higher aerodynamic loss in the tip leakage vortex region, meanwhile it leads to lower aerodynamic loss in the passage vortex region. The discharge of cavity fluid through the cutback opening provides a beneficial effect in the reduction of aerodynamic loss, whereas there also exists a side effect of aerodynamic loss increase due to local wider tip gap near the trailing edge. With increasing $CB/c_c$ from 0.0 to 0.3, the aerodynamic loss coefficient mass-averaged all over the measurement plane tends to increase slightly.

Three-Dimensional Flow Characteristics in a Linear Turbine Cascade Passage (선형 터빈 케스케이드 통로에서의 3차원 유동 특성)

  • 차봉준;이상우;이대성
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.12
    • /
    • pp.3148-3165
    • /
    • 1993
  • A cascade wind tunnel test for a turbine nozzle, which was designed for a small turbo jet engine in a previous study, has been conducted to evaluate its aerodynamic performance and losses. The large-scale blades were based on the mid-span profile of the nozzle. Oil film flow structure, and then 3-dimensional velocity components were measured in the flow passage with a 5-hold pressure probe, in addition to turbulent intensities at mid-span of cascade exit using a hot-wire anemometer. From this study, 3-dimensional growth of horseshoe and passage vortices in the downstream direction was clearly understood with near-wall flow phenomena. In addition, secondary flow and losses associated with the blade configuration were obtained in detail.

Improvement of the flow around airfoil/flat-plate junctures by optimization of the leading-edge fence (날개-평판 접합부에서의 날개 앞전 판 최적화를 통한 유동특성 향상)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.9
    • /
    • pp.829-836
    • /
    • 2009
  • 3-Dimensional flow which is represented by horseshoe vortex is generated as a type of secondary flow about the main flow. As well, it causes the flow loss. The present study deals with the leading edge fence shape on a wing-body junction to decrease a horseshoe vortex, one of the main factors to generate the secondary flow losses. The shape of leading-edge fence was optimized with the design variables of the installed height, length, width, and thickness of the fence as the design variables. Approximate optimization design method is used as the optimization. The study was investigated using $FLUENT^{TM}$ and $iSIGHT^{TM}$. Total pressure coefficient of the optimized design case was decreased about 7.5 % compare to the baseline case.

Comparative Study on the Secondary Flow Measurement in a Turbine Cascade Using 5-hole and 7-hole Probes (5공과 7공 프로브를 이용한 터빈 캐스케이드의 이차유동 측정 결과 비교연구)

  • Nho, Young-Cheol;Lee, Yong-Jin;Park, Jung-Shin;Kim, Hark-Bong;Kwak, Jae-Su
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.5-12
    • /
    • 2010
  • Comparative study on the flow measurement by 5-hole and 7-hole probes was conducted in a linear cascade with tip clearances of 2.3%, 3.1%, and 4.4% of the blade span. Calibration range of the 5-hole and the 7-hole probes were ${\pm}25$ and ${\pm}50$ degrees, respectively. Results show that the secondary flow and total pressure loss measured by the 5e-hole and 7-hole probes were similar at small tip clearance cases. However, at the tip clearance of 3.1% and 4.4% of the blade span cases, flow angles exceeding the calibration range of the 5-hole probe were observed. Because of the wider calibration range, larger flow angle by strong leakage vortex could be measured by the 7-hole probe.

Controlling the Horseshoe Vortex by the Leading-Edge Fence at a Generic Wing-Body Junction (일반적인 날개 형상에서의 앞전 판에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.4
    • /
    • pp.336-343
    • /
    • 2009
  • Secondary flow losses can be as high as 30~50% of the total aerodynamic losses generated in the cascade of a turbine. Therefore, these are important part for improving a turbine efficiency. As well, many studies have been performed to decrease the secondary flow losses. The present study deals with the leading edge fences on a wing-body to decrease a horseshoe vortex, one of the factors to generate the secondary flow losses, and investigates the characteristics of the generated horseshoe vortex as the shape factors, such as the installed height, and length of the fence. The study was investigated using $FLUENT^{TM}$. Total pressure loss coefficient was improved about 4.0 % at the best case than the baseline.

Controlling the Horseshoe Vortex by Leading-Edge Chamfer at a Generic Wing-Body Junction (단순 날개-몸체 접합부에서의 앞전 모서리 홈에 의한 말굽와류 제어)

  • Cho, Jong-Jae;Kim, Kui-Soon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.2
    • /
    • pp.26-34
    • /
    • 2009
  • Secondary flow losses can be as high as 30~50% of the total aerodynamic losses for a turbo-machinery blade or stator row. These are important part for improving a turbine efficiency. Therefore, many studies have been performed to decrease the secondary flow losses. The present study deals with the chamfered leading-edge at a generic wing-body junction to decrease the horseshoe vortex, one of factors to generate the secondary flow losses, and investigates the vortex generation and the characteristics of the horseshoe vortex with the chamfered height, and depth of the chamfer by using $FLUENT^{TM}$. It was found that the total pressure loss for the best case can be decreased about 1.55% compare to the baseline case.

Secondary flow Control in the Turbine Cascade with the Three-Dimensional Modification of Blade Leading Edge (블레이드 앞전 3차원 형상 변형에 의한 터빈 캐스케이드 내의 이차유동 제어)

  • Kim, Jeong-Rae;Moon, Young-June;Chung, Jin-Tack
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1552-1558
    • /
    • 2002
  • The blade leading edge is modified to control the secondary flow generated in the turbine cascade with fence by intensifying the suction side branch of the horseshoe vortex. The incompressible Navier-Stokes equations are numerically solved with a high Reynolds number k-$\varepsilon$ turbulence closure model for investigating the vortical flows in the turbine cascade. The computational results of total pressure loss coefficients in the wake region are first compared with experiments for validation. The structure and strength of the passage vortex near the suction surface are examined by testing various geometrical parameters of the turbine blade leading edge.