• Title/Summary/Keyword: Secondary Air System

Search Result 275, Processing Time 0.024 seconds

A Characteristics of a Secondary flow in a Corner Section of Square Duct (정사각덕트의 코너부에서 이차유동 특성)

  • Joung, J.M.;Kim, J.H.;Yoo, Y.T.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.753-758
    • /
    • 2000
  • Heat engine and fluid machinery in the plant have to linked with various ducts network and the corresponding design have to be concerned about effectiveness and stability of system of plant. To optimum control and design system concerning stability, economization, operating effectiveness we have to exact analysis flow properties of a duct applying to fluid machinery, heat exchanger, cooling machine, air conditioning equipment. therefore, it is necessary to research the duct, heat transfer equipment, for increasing overall effectiveness of air conditioning system by suggesting basic data of the duct resulting from organic research. So we can contribute to technical development of the duct. In case of speeding up the flow rate of the duct, lots of wave velocity components are occurred the value of boundary layer resulting from developing the boundary layer at both walls of duct.

  • PDF

Enhancement of Turbulent Heat Transfer of the Cooling System in Nuclear Reactor by Large Scale Vortex Generation

  • Chun, Kun-Ho;Park, Jong-Seok;Choi, Young-Don
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.77-84
    • /
    • 2001
  • Experimental and computational studies were carried out to investigate the turbulent heat transfer enhancement of the cooling system in nuclear reactor by large scale vortex generation. The large scale vortex motion was generated by rearranging the inclination angels of mixing vanes to the coordinate direction. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity concept based on $\kappa{-}\varepsilon$ model was employed to calculate the turbulent heat and momentum transfers in the subchannel. The turbulences generated by split mixing vanes has small length scales so that they maintain only about $10D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex motions continue longer and remain up to $25D_H$ after the spacer grid.

  • PDF

Turbulent Enhancement of the Cooling System of Nuclear Reactor by Large Scale Vortex Generation in a Nuclear Fuel Bundles (원자로 연료봉내 대형 와유동에 의한 원자로 냉각제 시스템의 난류 증진)

  • 전건호;박종석;최영돈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.11
    • /
    • pp.1004-1011
    • /
    • 2000
  • Experimental and computational studies were carried out to confirm the turbulent enhancement of the cooling system of nuclear reactor by large scale vortex generation in nuclear fuel bundle. The large scale vortex motions were generated by rearranging the inclination angles of mixing vanes to the coordinate directions. Axial development of mean and turbulent velocities in the subchannels were measured by the 2-color LDV system. Eddy diffusivity heat flux model and $k-varepsilon$ model were employed to analyze the turbulent heat and fluid flows in the subchannel. The turbulence generated by split mixing vanes has small length scales so that they maintain only about $10 D_H$ after the spacer grid. On the other hand, the turbulences generated by the large scale vortex continue more and remain up to $25 D_H$after the spacer gird.

  • PDF

Part-load Performance of a Screw Chiller with Economizer using R22 and R407C

  • Chang, Young-Soo;Kim, Young-Il;Lee, Yong-Chul
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2005
  • Screw compressor chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions during most of the time. Therefore, information on the characteristics of part-load is very important for better chiller performance and energy economy. In this study, performance tests of screw chiller with economizer using R22 and R407C under part-load conditions have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when economizer volume ratio is 1.01. For the same cooling capacity condition at part-load, COP's of both non-economizer and economizer system showed similar values.

The Modeling of inductive power collector for light railway system (소형궤도차량 시스템에 적합한 유도전력 집전 장치의 모델링)

  • Han, K.H.;Lee, B.S.;Baek, S.H.
    • Proceedings of the KIEE Conference
    • /
    • 2005.04a
    • /
    • pp.215-217
    • /
    • 2005
  • In this paper, the inductive power collector using electromagnetic induction for the PRT{Personal Rapid Transit) system is suggested and some ideas for power collector design to improve the power transfer performance are presented. The proposed the inductive power collector is used for the PRT system, which has a large air-gap and demands a large electrical power capability. But, low output power is generated due to a loosely coupled characteristic of the large air-gap. Therefore, double layer construction of secondary winding, which was divided in half to increase both output current and output voltage was suggested. Also, model of power collector and parallel winding structure are presented, in addition, the performance of inductive power collector to alignment condition between the primary power line and the inductive power transformer was verified by computer simulation of 2kW model.

  • PDF

Part-Load Performance Test of a Screw Chiller with Economizer using R22 and R407C (이코노마이저를 채용한 스크류 냉동기에서 R22와 R407C의 부분부하 성능실험)

  • 장영수;이용철;김영일
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.11
    • /
    • pp.902-909
    • /
    • 2003
  • Screw compressor type chillers are widely used in refrigeration for capacity over 30 RT. In general, chillers operate under part-load conditions. Therefore, information on characteristics at part-load is very important in view of chiller performance and energy economy. In this study, performance tests of part-load and economizer system using R22 and R407C have been performed for various secondary fluid temperatures. Adoption of an economizer system increased the cooling capacity and improved COP except for lower part-load condition when injection volume ratio is 1.01. For the same cooling capacity condition at part-load, COP of both non-economizer and economizer system showed similar values.

Pollutant Sources Contribution Analysis of PM2.5 using The CMB Receptor Model (CMB 수용모델을 이용한 PM2.5의 오염원 기여도 분석)

  • Koo, Tai-Wan;Hong, Min-Sun;Moon, Su-Ho;Kim, Ho-Jung
    • Journal of the Korean Applied Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.866-875
    • /
    • 2019
  • In this study, The Chemical Mass Balance (CMB) model was used to identify pollutant sources and their contributions to $PM_{2.5}$. The contribution rankings by emission source in A city were ash dust (30.1%) > biomass burning (21.9%) > secondary pollutants (21.1%) > mobile source (19.3%) > area sources (7.6%), and The emission sources increased from the contribution of the CMB model and the Clean Air Policy Support System (CAPSS) emissions were biomass burning and secondary pollutants, and The emission sources reduced were mobile source, ash dust, and area sources.

Verification Experiment of a Ground Source Multi-heat Pump at Cooling Mode (지열원 물대공기 멀티 히트펌프의 냉방 운전 특성에 관한 실증 연구)

  • Choi, Jong-Min;Kang, Shin-Hyung;Choi, Jae-Ho;Lim, Hyo-Jae;Moon, Je-Myung;Kwon, Young-Seok;Kwon, Hyung-Jin;Kim, Rock-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.21 no.5
    • /
    • pp.297-304
    • /
    • 2009
  • The aim of this study is to investigate the cooling performance of ground source multi-heat pump systems with a vertical single U-tube GLHX(U-tube system) and a vertical double tube GLHX(double tube system), which were installed in a school building located in Cheonan. All systems were operated in a part load conditions for all day, and the maximum COP of the single U-tube system and the double tube system were 6.2 and 5.2 at cooling mode, respectively. The double tube GLHX designed by the GLHEPRO, commercial program, was estimated to have the same performance as the U-tube GLHX, because the inlet temperatures of each outdoor unit heat exchanger for the former was similar to the latter. However, it is needed to prove the long tenn performance. It is suggested that the new algorithms to control the flow rate of secondary fluid for GLHX according to load variation have to be developed in order to enhance the performance of the system.

Influence of changing combustor pressure on flame stabilization and NOx emission in swirl flame (연소실 압력변동이 스월 화염에서 화염 안정화와 NOx 배출에 미치는 영향)

  • Kim, Jong-Ryul;Choi, Gyung-Min;Kim, Duck-Jool
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.569-572
    • /
    • 2006
  • In present study, the influence of changing combustor pressure on flame stabilization and nitrogen oxide (NOX) emission in the swirl flame with secondary fuel injection was investigated. The combustor pressure was controlled by suction at combustor exit. Pressure index ($P^*=Pabs/Patm$), where Pabs and Patm indicated the absolute pressure and atmosphere pressure, was controlled in the range of 0.7~1.15 for each equivalence ratio conditions. It could be observed that flame stable region became narrower with decreasing equivalence ratio and pressure index. In this combustion system, stable flames were formed until $P^*=\;0.7$. Emission index decreased with decreasing pressure index for overall equivalence ratio conditions and NOx reduction rates were almost identical for $P^*<1$ regardless of equivalence ratio though EINOx values showed different level with change of equivalence ratio for $P^*{\geq}1$. It is also observed that EINOx decreased with increasing secondary fuel injection ratio. Emission index of nitric oxide was controllable by adjusting the changing combustor pressure and injecting secondary fuel and this NOx reduction technology is applicable to industrial furnaces and air conditioning system.

  • PDF

Analysis of electromagnetic fields in relation to the forms of IPT systems to get maximum output (최대출력을 얻기 위한 유도급전장치의 형태에 따른 전자장 해석)

  • Choi, Suk-Jin;Oh, Yun-Sang;Lee, Sang-Jin;Lee, Byung-Song;Park, Chan-Bae;Lee, Hyung-Woo
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.481-487
    • /
    • 2010
  • The equivalent circuits intended to analyze the characteristics of IPT systems can be shown in structures similar to those of existing transformers. IPT systems are composed of combinations of the primary and secondary coils based on magnetic coupling, and the performances are determined by the lengths or the degrees of magnetic coupling of current collecting conductors(secondary) and feeding rails (primary) and system performances become the maximum when they are coupled under the optimum condition. To maximize the output currents of the secondary side, the shapes of iron cores and the structures of coils etc should be considered. To this end, three types of IPT system simulation models were selected and they were analyzed using an electromagnetic field analyzing program. To compare the types with each other, the sizes of the IPT systems and the primary side voltages etc were made to be the same. The electromagnetic fields were analyzed while changing the thicknesses of the cores and the lengths of the air gap etc and the results were analyzed in order to derive the optimum specifications.

  • PDF