• Title/Summary/Keyword: Second-order rate constant

Search Result 164, Processing Time 0.026 seconds

Kinetic Studies on the Reaction of 4-Substituted-2,6-dinitrochlorobenzenes with Substituted Anilines in MeOH-MeCN Mixtures (MeOH-MeCN 혼합용매계에서 4-치환-2,6-이니트로 염화벤젠과 아닐린 치환체와의 반응에 대한 속도론적 연구)

  • Dae-Ho Kang;In-Sun Koo;Jong Gun Lee;Ikchoon Lee
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.6
    • /
    • pp.565-574
    • /
    • 1985
  • The rates of reaction between 4-substituted-2,6-dinitrochlorobenzenes with para-substituted anilines in methanol-acetonitrile mixtures were measured by conductometry. It was observed that the rate constant increases in the order of X = 4-$NO_2 {\gg}4-CN {\gg}4- CF_3$, where X is a substituent in the substrate. The rate constant also increases in the order of Y = p-O$CH_3{\gg}p- CH_3{\gg}H {\gg}p-Cl{\gg}m- NO_2$, where Y is a substituent in the aniline ring. Kinetic studies in the methanol-acetonitrile solvent system with various nucleophiles showed that the N-C bond forming step is making a great contribution to the overall second order rate constant. The electrophilic catalysis by methanol probably consists of the hydrogen bonding between alcoholic hydrogen and leaving chloride in the transition state. The nucleophilic catalysis by methanol may be ascribed to the formation of hydrogen bonds between alcoholic oxygen and hydrogens of amines in the transition state. All these experimental facts are supporting the operation of $S_N$Ar machanism with the second step being the rate determining. This mechanism can be successfully fitted to the PES model.

  • PDF

The Effects of Charge Transfer Complex on the Reaction of Aniline and Iodine (Aniline과 Iodine간의 반응에 있어서 전하이동 착물의 영향)

  • Oh-Yun Kwon;U-Hyon Paek;Eung-Ryul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.36 no.2
    • /
    • pp.174-179
    • /
    • 1992
  • Reaction of aniline and iodine in$CHCl_3,\;CH_2Cl_2 : CHCl_3$(1 : 1), and $CH_2Cl_2$ has been studied kinetically by using conductivity method, Pseudo first-order rate constants ($k_{obs}$) and second-order rate constants ($k_{obs}$/[aniline]) are dependent on the aniline concentration. Second-order rate constants obtained were increased with increasing aniline concentration. We analysed these results on the basis of formation of charge transfer complex as reaction intermediate. From the construction of react ion scheme and derivation of rate equation, we calculated equilibrium constants and activation parameters for the formation and transformation of charge transfer complex. The equilibrium constants were decreased by an increase in the dielectric constant of the solvent and the value is 1.7-3.7$M^{-1}$. The rate of transformation are markedly affected by the solvent polarity. ${\Delta}H^{\neq}$ is about 14.2kJ/mol, and ${\Delta}S^{\neq}$ is large negative value of -243J/mol K.

  • PDF

High-Performance VLSI Architecture Using Distributed Arithmetic for Higher-Order FIR Filters with Complex Coefficients

  • Tsunekawa, Yoshitaka;Nozaki, Takeshi;Tayama, Norio
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.856-859
    • /
    • 2002
  • This paper proposes a high-performance VLSl architecture using distributed arithmetic for higher-order FIR filters with complex coefficients. For the purpose of realizing high sampling rate with small latency in high-order filters, we apply distributed arithmetic[1]. Moreover, in order to decrease drastically the power dissipation, the structure applying not ROM's but optimum function circuits which we have previously proposed, is utilized[2][3]. However, this structure increases in the number of adders as compared to the conventional structure applying ROM's. In order to realize a more effective method for further higher-order filter, we propose newly an implementation applying two methods which have large effects on the unit using the adders. First , we propose an implementation applying SFAs(Serial Full Adders) and SFSs(Serial Full Subtractors). Second, we propose a structure applying proposed 4-2 adders. Finally, it is shown that the proposed architecture is an effective way to realize low power dissipation and small latency while the sampling rate is kept constant for further higher-order filters with complex coefficients.

  • PDF

Kinetic Studies on the Reduction of 1-Benzyl-3-cyanoquinolinium Cations by Sodium Borohydride and the Applicability Marcus Theory

  • Han, In-Sook;Lee, Chang-Kiu;Han, In-Sup
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.2
    • /
    • pp.79-83
    • /
    • 1987
  • The reduction of a series of 1-substituted benzyl-3-cyanoquinolinium ions (p-$cH_3$, H, p-Br, m-F, p-CN) by sodium borohydride has been investigated. In all cases the products from these reactions were found to be 1, 2-dihydroquinolines over 82% yields. Rates of reduction were measured in basic condition and in solvent system consisting of 4 parts of isopropyl alcohol and 1 part of water by volume. Second order rate constants were obtained for these reactions. When the ratio of [$OH^-$] to [$BH_4^-$] becomes large the observed rate constants ($K_{obs}$) decrease by a small factor. Reaction scheme and rate law are discussed. Bronsted ${\alpha}(=\frac{d\;In\;k}{d\;In\;K})$ obtained by using the value of equilibrium constant K, which was obtained previously, was not 0. Instead, a value of 0.36 was obtained which indicated that the reduction by borohydride was structure-dependent according to the Marcus formalism even though the reaction rate was close to the diffusion limit.

Preliminary Study: Comparison of Kinetic Models of Oil Extraction from Vetiver (Vetiveria Zizanioides) by Microwave Hydrodistillation

  • Kusuma, Heri Septya;Rohadi, Taufik Imam;Daniswara, Edwin Fatah;Altway, Ali;Mahfud, Mahfud
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.574-577
    • /
    • 2017
  • In Indonesia, vetiver oil is one commodity that plays an important role in the country's foreign exchange earnings. Currently, the extraction of essential oil from vetiver still uses conventional methods. Therefore, the aim of this study was to know and verify the kinetics and mechanism of microwave hydrodistillation of vetiver based on two models. In this study, microwave hydrodistillation was used to extract essential oils from vetiver. The extraction was carried out in nine extraction cycles of 20 min to 3 hours. The rate constant, the equilibrium extraction capacity, and the initial extraction rate were calculated using the two models. Kinetics of oil extraction from vetiver by microwave hydrodistillation proved that the extraction process was based on the second-order extraction model. The second-order model was satisfactorily applied, with high coefficients of correlation ($R^2=0.9427$), showing that it well described the process.

Applicability of adsorption kinetic model for cation/anion for chitosan hydrogel bead (키토산비드를 이용한 양이온/음이온의 흡착모델 적용)

  • An, Byungryul
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.3
    • /
    • pp.205-213
    • /
    • 2019
  • Batch adsorption tests were performed to evaluate the applicability of adsorption kinetic model by using hydrogel chitosan bead crosslinked with glutaraldehyde (HCB-G) for Cu(II) as cation and/or phosphate as anion. Pseudo first and second order model were applied to determine the sorption kinetic property and intraparticle and Boyd equation were used to predict the diffusion of Cu(II) and phosphate at pore and boundary-layer, respectively. According to the value of theoretical and experimental uptake of Cu(II) and phosphate, pseudo second order is more suitable. On comparison with the value of adsorption rate constant (k), phosphate kinetic was 2-4 times faster than that of Cu(II) at any experimental condition indicating the electrostatic interaction between ${NH_3}^+$ and phosphate is dominated at the presence of single component. However, when Cu(II) and phosphate simultaneously exist, the value of k for phosphate was sharply decreased and then the difference was not significant. Both diffusion models confirmed that the sorption rate was controlled by film mass transfer at the beginning time (t < 3 hr) and pore diffusion at next time section (t > 6 hr).

Decolorization Characteristics of Acid and Basic Dyes Using Modified Zero-valent Iron (개질 영가철을 이용한 산성 및 염기성 염료의 탈색 특성)

  • Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.25 no.12
    • /
    • pp.1717-1726
    • /
    • 2016
  • In this study, the reductive decolorization of three acid and basic dyes using modified zero-valent iron (i.e., acid-washed iron (Aw/Fe) and palladium coated iron (Pd/Fe)) at various pH conditions (pH 3~5) was experimentally investigated and the decolorization characteristics were evaluated by analyzing the absorbance spectra and reaction kinetics. In the case of acid dyes such as methyl orange and eriochrome black T, color removal efficiencies increased as initial pH of the dye solution decreased. However, the color removal of methylene blue, a basic dye, was not affected much by the initial pH and more than 70% of color was removed within 10 min. During the decolorization reaction, the absorbance of methyl orange (${\lambda}_{max}=464nm$) and eriochrome black T (${\lambda}_{max}=528nm$) decreased in the visible range but increased in the UV range. The absorbance of methylene blue (${\lambda}_{max}=664nm$) also decreased gradually in the visible range. Pseudo-zero order, pseudo-first order, and pseudo-second order kinetic models were used to analyze the reaction kinetics. The pseudo-second order kinetic model was found to be the best with good correlation. The decolorization reaction rate constants ($k_2$) of methylene blue were relatively higher than those of methyl orange and eriochrome black T. The reaction rate constants of methyl orange and eriochrome black T increased with a decrease in the initial pH.

A Mechanistic Study on Nucleophilic Substitution Reactions of Aryl Substituted Benzenesulfonates with Anionic Nucleophiles

  • Um Ik-Hwan;Lee Seok-Joo;Kim Jung-Joo;Kwon Dong-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.6
    • /
    • pp.473-477
    • /
    • 1994
  • Second-order rate constants have been measured spectrophotometrically for the nucleophilic substitution reactions of aryl substituted benzenesulfonates $(1,\;X-C_6H_4SO_2-OC_6H_4-Y)$ with aryloxides $(Z-C_6H_4O^{-})$ and ethoxide $(EtO^-)$ in absolute ethanol at $25^{circ}C$. The nucleophilicity of aryloxides increases with increasing electron donating ability of the substituent (Z) on aryloxides, and results in a good Hammett correlation with $\sigma^{-}$ constant. The reactivity of 1 toward aryloxides and ethoxide shows also significant dependence on the electronic nature of the substituent X and Y. Large positive ${\sigma}_{acyl}$ values have been obtained for the reaction of 1 with phenoxide and ethoxide, indicating that the leaving group departure is little advanced at the transition-state of the rate-determining step. This has been further supported from the fact that ${\sigma}^-$ constant gives extremely poor Hammett correlation, while ${\sigma}^0$ does reasonably good correlation for the reaction of 1 with ethoxide. Thus, the present sulfonyl-transfer reaction is proposed to proceed via a ratedetermining attack of nucleophile to the sulfur atom of 1 followed by a fast leaving group departure.

Efficient Removal of Sulfamethoxazole in Aqueous Solutions Using Ferrate (VI): A Greener Treatment

  • Lalthazuala, Levia;Tiwari, Diwakar;Lee, Seung-Mok;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.32 no.3
    • /
    • pp.340-347
    • /
    • 2021
  • The aim of this research is to assess the use of high purity potassium ferrate (VI) for the efficient removal of sulfamethoxazole (SMX), one of the potential micro-pollutant found in aqueous waste. In addition, various parametric studies have enabled us to deduce the mechanism in the degradation process. The pH and concentration of sulfamethoxazole enable the degradation of pollutants. Moreover, the time-dependent degradation nature of sulfamethoxazole showed that the degradation of ferrate (VI) in presence of sulfamethoxazole followed the pseudo-second order kinetics and the value of rate constant increased with an increase in the SMX concentration. The stoichiometry of SMX and ferrate (VI) was found to be 2 : 1 and the overall rate constant was estimated to be 4559 L2/mmol2/min. On the other hand, the increase in pH from 8.0 to 5.0 had catalyzed the degradation of SMX. Similarly, a significant percentage in mineralization of SMX increased with a decrease in pH and concentration. The presence of co-existing ions and SMS spiked real water samples was extensively analyzed in the removal of SMX using ferrate (VI) to simulate studies on real matrix implication of ferrate (VI) technology.

Numerical and Experimental Analyses Examining Ozone and Limonene Distributions in Test Chamber with Various Turbulent Flow Fields

  • ITO, Kazuhide
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.16 no.3
    • /
    • pp.89-99
    • /
    • 2008
  • Indoor ozone has received attention because of its well-documented adverse effects on health. In addition to the inherently harmful effects of ozone, it can also initiate a series of reactions that generate potentially irritating oxidation products, including free radicals, aldehydes, organic acids and secondary organic aerosols (SOA). Especially, ozone reacts actively with terpene. The overarching goal of this work was to better understand ozone and terpene distributions within rooms. Towards this end, the paper has two parts. The first describes the development of a cylindrical test chamber that can be used to obtain the second order rate constant $(k_b)$ for the bi-molecular chemical reaction of ozone and terpene in the air phase. The second consists of model room experiments coupled with Computational Fluid Dynamics (CFD) analysis of the experimental scenarios to obtain ozone and terpene distributions in various turbulent flow fields. The results of CFD predictions were in reasonable agreement with the experimental measurements.