• Title/Summary/Keyword: Second-Throat

Search Result 79, Processing Time 0.027 seconds

An Experimental Study on Performance of Second Throat Exhaust Diffusers of Different Configuration (2차목 초음속 디퓨저의 형상 변화에 따른 성능에 관한 실험적 연구)

  • Jeon, Jun Su;Kim, Wan Chan;Yeoun, Hae In;Kim, Min Sang;Ko, Young Sung;Han, Young Min
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.4
    • /
    • pp.279-288
    • /
    • 2014
  • Second throat supersonic exhaust diffusers (STEDs) were designed to simulate high-altitude conditions according to the normal-shock model. Experimental studies were performed on the STEDs to investigate how performance characteristics varied with the length and diameter of the STED using high-pressure nitrogen gas. The variation in performance due to length indicated that the performance of the STED could be very slightly improved by adjusting the diffuser inlet length ($L_d$), and it could be significantly improved by optimizing the second throat length ratio ($L_{st}/D_{st}$) and the divergence length ($L_s$). The starting and vacuum chamber pressures exhibited the highest level of performance near ($A_d/A_{st}$) of the design point.

Investigation of the essential parameters governing starting characteristic in the second throat exhaust diffuser for high altitude simulation (고도모사용 2 차목 초음속 디퓨져 시동특성에 영향을 미치는 파라미터에 관한 연구)

  • Park, Sung-Hyun;Park, Byung-Hoon;Lim, Ji-Hwan;Yoon, Woong-Sup
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2642-2647
    • /
    • 2008
  • Starting characteristics of the axi-symmetric supersonic exhaust diffuser(SED) with a second throat are numerically investigated. Main purpose of this study is to predict theoretical starting pressure of STED using 1-D normal shock theory and to present the range of optimum starting pressure through parametric study with essential design parameters of STED influencing on starting performance. Renolds-Average Navier-Stokes equations with a standard ${\kappa}-{\varepsilon}$ turbulence model incorporated with standard wall function are solved to simulate the diffusing evolutions of the nozzle plume. Minimum(optimum) starting pressure difference of $20{\sim}25%$ between 1-D theory and experimental evidences validated from previous results[5] is also applied to predict those in this system. The analysis results indicate that dominant parameters for diffuser starting in this system is diffuser expansion ratio($A_d/A_t$), which has optimum value 120 and second throat area ratio($A_d/A_{st}$), which has optimum range $3.3{\sim}3.5$.

  • PDF

A Numerical Study on Flow Characteristics of Second Throat Exhaust Diffuser with Shock Cone Shape (램 구조물 형상에 따른 이차목 디퓨저의 유동 특성에 관한 수치적 연구)

  • Yu, Seongha;Jo, Seonghwi;Kim, Hongjip;Ko, Youngsung;Na, Jaejeong
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.346-351
    • /
    • 2017
  • A numerical study has been conducted to investigate flow characteristics of STED with ram structure shape. By increasing the attack angle of shock cone, vacuum pressure is increased because of oblique shock at ram structure and separation point moved to the downstream of the second throat. By increasing blockage ratio, expansion wave angle is increased at ram structure while vacuum pressure is constant.

  • PDF

A Numerical Study on Flow and Heat Transfer Characteristics of Supersonic Second Throat Exhaust Diffuser for High Altitude Simulation (고고도 모사용 초음속 이차목 디퓨저의 유동 및 열전달 특성에 대한 수치적 연구)

  • Yim, Kyungjin;Kim, Hongjip;Kim, Seunghan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.5
    • /
    • pp.70-78
    • /
    • 2014
  • A numerical study has been conducted to investigate flow and heat transfer characteristics of supersonic second throat exhaust diffusers for high altitude simulation. By changing pressure and configuration, flow and cooling characteristics of the diffuser have been studied. At the normal operation of the diffuser, there were high temperature regions over 3,000 K without cooling, especially near wall and in subsonic diffuser part. If the cooling system of the diffuser is added, flow velocity is increased due to the cooled wall temperature.

Performance Characteristics of Secondary Throat Supersonic Exhaust Diffusers (2차목 초음속 디퓨저의 주요 설계 변수에 따른 성능 특성)

  • Park, Jin-Ho;Jeon, Jun-Su;Yu, I-Sang;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Han, Yeoung-Min
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.641-644
    • /
    • 2011
  • The performance tests of secondary throat supersonic exhaust diffusers were carried out by using scaled down model and gas nitrogen. It was performed to find the performance characteristics according to diffuser inlet length(Ld), secondary throat length(Lst), divergence length(Ls). There was few change by diffuser inlet length(Ld), but starting pressures of the diffusers were effected by secondary throat length(Lst), divergence length(Ls). It was confirmed that starting pressure was not changed over 8 Lst/Dst.

  • PDF

Computational Study of the Axisymmetric, Supersonic Ejector-Diffuser Systems

  • Kim, Heuy-Dong;Lee, Young-Ki;Seo, Tae-Won;Raghunathan, Srinivasan
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.520-524
    • /
    • 2000
  • A ejector system is one of the fluid machinery, which has been mainly used as an exhaust pump or a vacuum pump. The ejector system has often been pointed out to have only a limited efficiency because it is driven by pure shear action and the mixing action between primary and secondary streams. In the present work, numerical simulations were conducted to investigate the effects of the geometry and the mass flow ratio of supersonic ejector-diffuser systems on their mixing performance. A fully implicit finite volume scheme was applied to solve the axisymmetric Navier-Stokes equations, and the standard ${\kappa}-{\varepsilon}$ turbulence model was used to close the governing equations. The flow fields of the supersonic ejector-diffuser systems were investigated by changing the ejector throat area ratio and the mass flow ratio. The existence of the second throat strongly affected the shock wave structure inside the mixing tube as well as the spreading of the under-expanded jet discharging from the primary nozzle, and served to enhance the mixing performance.

  • PDF

Study on Design of Secondary Throat Supersonic Exhaust Diffusers (2차목 초음속 디퓨저 설계에 관한 연구)

  • Park, Jin-Ho;Lee, Yang-Suk;Kim, Joong-Il;Ko, Young-Sung;Kim, Sun-Jin;Kim, Yoo;Kim, Seung-Han
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.881-884
    • /
    • 2011
  • Secondary throat supersonic exhaust diffusers were designed by Normal-shock theory and manufactured. Experimental studies of the diffusers were performed using nitrogen gas of room temperature. It showed a difference about 18% between the experimental and theoretical results. The difference was shown by friction loss at the wall of the diffuers.

  • PDF

Computational Study of the Bleed-Pump Type Subsonic/Sonic Ejector Flows (추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구)

  • Kim, Heuy-Dong;Kwon, Oh-Sik;Koo, Byoung-Soo;Choi, Bo-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.485-490
    • /
    • 2000
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends form the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

  • PDF

Computations of the Bleed-Pump Type Subsonic/Sonic Ejector Flows (추기 펌프형 아음속/음속 이젝터유동에 관한 수치해석적 연구)

  • Choe, Bo-Gyu;Gu, Byeong-Su;Kim, Hui-Dong;Kim, Deok-Jul
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.2
    • /
    • pp.269-276
    • /
    • 2001
  • This paper dipicts the computational results for the axisymmetric subsonic/sonic ejector systems with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-Averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the ejector diffuser exit. In order to obtain practical design factors for subsonic/sonic ejector systems, the ejector throat area, the mixing section configuration, and the ejector throat length were changed in computations. For the subsonic/sonic ejector systems operating in the range of low operation pressure ratio, the effects of the design factors on the flow are discussed.

Study of the Unsteady Gas Flow in a Critical Nozzle (임계노즐에서 발생하는 비정상유동에 관한 연구)

  • Kim, Jae-Hyung;Kim, Heuy-Dong;Park, Kyung-Am
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.337-345
    • /
    • 2002
  • The present study addresses a computational result of unsteady gas flow through a critical nozzle. The axisymmetric, unsteady, compressible, Wavier-Stokes equations are solved using a finite volume method that makes use of the second order upwind scheme for spatial derivatives and the multi-stage Runge-Kutta integral scheme for time derivatives. The steady solutions of the governing equation system are validated with the previous experimental data to ensure that the present computational method is valid to predict the critical nozzle flows. In order to simulate the effects of back pressure fluctuations on the critical nozzle flows, an excited pressure oscillation with an amplitude and frequency is assumed downstream of the exit of the critical nozzle. The results obtained show that for low Reynolds numbers, the unsteady effects of the pressure fluctuations can propagate upstream of the throat of critical nozzle, and thus giving rise to the applicable fluctuations in mass flow rate through the critical nozzle, while for high Reynolds numbers, the pressure signals occurring at the exit of the critical nozzle do not propagate upstream beyond the nozzle throat. For very low Reynolds number, it is found that the sonic line near the throat of the critical nozzle remarkably fluctuateswith time, providing an important mechanism for pressure signals to propagate upstream of the nozzle throat, even in choked flow conditions. The present study is the first investigation to clarify the unsteady effects on the critical nozzle flows.

  • PDF