• 제목/요약/키워드: Second-Order Structural Model

검색결과 353건 처리시간 0.024초

Analytical model for the prediction of the eigen modes of a beam with open cracks and external strengthening

  • Ovigne, P.A.;Massenzio, M.;Jacquelin, E.;Hamelin, P.
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.437-449
    • /
    • 2003
  • The aim of this study is to develop an analytical model of a beam with open cracks and external strengthening which is able to predict its modal scheme components (natural frequencies and mode shapes). The model is valid as far as the excitation level is low enough not to activate non linear effects. The application field of the model are either the prediction of the efficiency of the reinforcement or the non destructive assessment of the structural properties. The degrees of freedom associated to the fault lips must be taken into account in order to introduce the effect of the external strengthening. In a first step, an analytical formulation of a beam with thin notches is proposed according to the references. The model is then extended to incorporate the strengthening consisting in a longitudinal stiffness applied in the vicinity of the cracks. In a second step, the analytical results are compared with these obtained from a finite element simulation.

중복근을 갖는 감쇠 시스템의 고유진동수와 모드의 고차 민감도 해석 (ALGEBRAIC METHOD FOR COMPUTATION OF EIGENPAIR SENSITIVITIES OF DAMPED SYSTEMS WITH REPEATED EIGENVALUES)

  • 최강민;지한록;윤우현;이인원
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.721-726
    • /
    • 2004
  • A simplified method for the computation of first second and higher order derivatives of eigenvalues and eigenvectors derivatives associated with repeated eigenvalues is presented. Adjacent eigenvectors and orthonormal conditions are used to compose an algebraic equation whose order is (n+m)x(n+m), where n is the number of coordinates and m is the number of multiplicity of the repeated eigenvalues. The algebraic equation developed can be used to compute derivatives of both eigenvalues and eigenvectors simultaneously. Since the coefficient matrix in the proposed algebraic equation is non-singular, symmetric and based on N-space it is numerically stable and very efficient compared to previous methods. This method can be consistently applied to structural systems with structural design parameters and mechanical systems with lumped design parameters. To verify the effectiveness of the proposed method, the finite element model of the cantilever beam is considered.

  • PDF

The Relationships among Coffeehouse's Physical Environment, Self-Congruity, Positive Emotion, and Revisit Intentions

  • Kwon, Nakyung;Choi, Young Gin
    • 한국조리학회지
    • /
    • 제20권5호
    • /
    • pp.111-118
    • /
    • 2014
  • This study sought to describe the relationships among physical environment, self-congruity, positive emotion, and revisit intentions in the coffeehouse setting. This study adopted second-order factor of physical environment in a structural equation model, imploying trend(fashion), cleanliness, reliability, spatial, convenience, and appropriacy as the second-order factors. The conceptual model in this study used responses from 338 college students who visited coffeehouse at least once in the past month. The proposed relationships were analyzed using SPSS 20.0 and AMOS 6.0. The results of data analysis indicated that the six secondorder factors of physical environment significantly affected coffeehouse visitor's self-congruity and positive emotion, and self-congruity as well as positive emotion significantly influenced revisit intentions. Further discussion and theoretical/practical implications of the findings along with directions for future studies are provided. In essence, the findings highlight significant role of coffeehouse's physical environment toward self-congruity and positive emotion in the formation of customer's revisit intentions in the coffeehouse context.

Structure-Control Combined Design with Structure Intensity

  • PARK JUNG-HYEN;KIM SOON HO
    • 한국해양공학회지
    • /
    • 제17권5호
    • /
    • pp.57-65
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

Structure-Control Combined Design with Structure Intensity

  • Park, Jung-Hyen;Kim, Soon-Ho
    • International Journal of Ocean Engineering and Technology Speciallssue:Selected Papers
    • /
    • 제6권1호
    • /
    • pp.60-68
    • /
    • 2003
  • This paper proposes an optimum design method of structural and control systems, using a 2-D truss structure as an example. The structure is subjected to initial static loads and disturbances. For the structure, a FEM model is formed. Using modal transformation, the equation of motion is transformed into modal coordinates, in order to decrease D.O.F. of the FEM model. To suppress the effect of the disturbances, the structure is controlled by an output feedback $H_{\infty}$ controller. The design variables of the combined optimal design of the control-structure systems are the cross sectional areas of truss members. The structural objective function is the structural weight. The control objective function is the $H_{\infty}$ norm, the performance index of control. The second structural objective function is the energy of the response related to the initial state, which is derived from the time integration of the quadratic form of the state in the closed-loop system. In a numerical example, simulations have been perform. Through the consideration of structural weight and $H_{\infty}$ norm, an advantage of the combined optimum design of structural and control systems is shown. Moreover, since the performance index of control is almost nearly optimiz, we can acquire better design of structural strength.

  • PDF

A model for investigating vehicle-bridge interaction under high moving speed

  • Liu, Hanyun;Yu, Zhiwu;Guo, Wei;Han, Yan
    • Structural Engineering and Mechanics
    • /
    • 제77권5호
    • /
    • pp.627-635
    • /
    • 2021
  • The speed of rail vehicles become higher and higher over two decades, and China has unveiled a prototype high-speed train in October 2020 that has been able to reach 400 km/h. At such high speeds, wheel-rail force items that had previously been ignored in common computational model should be reevaluated and reconsidered. Aiming at this problem, a new model for investigating the vehicle-bridge interaction at high moving speed is proposed. Comparing with the common model, the new model was more accurate and applicable, because it additionally considers the second-order pseudo-inertia forces effect and its modeling equilibrium position was based on the initial deformed curve of bridge, which could include the influences of temperature, pre-camber, shrinkage and creep deformation, and pier uneven settlement, etc. Taking 5 km/h as the speed interval, the dynamic responses of the classical vehicle-bridge system in the speed range of 5 km/h to 400 km/h are studied. The results show that ignoring the second-order pseudo-inertia force will underestimate the dynamic response of vehicle-bridge system and make the high-speed railway bridge structure design unsafe.

Fire-after-earthquake resistance of steel structures using rotational capacity limits

  • Pantousa, Daphne;Mistakidis, Euripidis
    • Earthquakes and Structures
    • /
    • 제10권4호
    • /
    • pp.867-891
    • /
    • 2016
  • This paper addresses numerically the behavior of steel structures under Fire-after-Earthquake (FAE) loading. The study is focused on a four-storey library building and takes into account the damage that is induced in structural members due to earthquake. The basic objective is the assessment of both the fire-behavior and the fire-resistance of the structure in the case where the structure is damaged due to earthquake. The combined FAE scenarios involve two different stages: during the first stage, the structure is subjected to the ground motion record, while in the second stage the fire occurs. Different time-acceleration records are examined, each scaled to multiple levels of the Peak Ground Acceleration (PGA) in order to represent more severe earthquakes with lower probability of occurrence. In order to study in a systematic manner the behavior of the structure for the various FAE scenarios, a two-dimensional beam finite element model is developed, using the non-linear finite element analysis code MSC-MARC. The fire resistance of the structure is determined using rotational limits based on the ductility of structural members that are subjected to fire. These limits are temperature dependent and take into account the level of the structural damage at the end of the earthquake and the effect of geometric initial imperfections of structural members.

An efficient reliability analysis strategy for low failure probability problems

  • Cao, Runan;Sun, Zhili;Wang, Jian;Guo, Fanyi
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.209-218
    • /
    • 2021
  • For engineering, there are two major challenges in reliability analysis. First, to ensure the accuracy of simulation results, mechanical products are usually defined implicitly by complex numerical models that require time-consuming. Second, the mechanical products are fortunately designed with a large safety margin, which leads to a low failure probability. This paper proposes an efficient and high-precision adaptive active learning algorithm based on the Kriging surrogate model to deal with the problems with low failure probability and time-consuming numerical models. In order to solve the problem with multiple failure regions, the adaptive kernel-density estimation is introduced and improved. Meanwhile, a new criterion for selecting points based on the current Kriging model is proposed to improve the computational efficiency. The criterion for choosing the best sampling points considers not only the probability of misjudging the sign of the response value at a point by the Kriging model but also the distribution information at that point. In order to prevent the distance between the selected training points from too close, the correlation between training points is limited to avoid information redundancy and improve the computation efficiency of the algorithm. Finally, the efficiency and accuracy of the proposed method are verified compared with other algorithms through two academic examples and one engineering application.

Damage Tensor를 이용한 손상된 암반구조체의 거동해석 (Global Behavior Analyses of Rock Mass Structures with Defects Using Damage Tensor)

  • 이상호;이형기;허용학;김재철
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.133-140
    • /
    • 2000
  • The objective of this study is to develop a damage model based on damage mechanics that can be used to analyze the mechanical behavior of structures with defects and the global behavior of damaged structures. A modified second order damage tensor that can be applied to finite element analysis is used to reflect the effect of damage. The damage stress computed from the effective stress is considered as an additional loading term acting on nodes and can represent the effect of crack surface. The accuracy of the proposed algorithm is verified by comparing the analysis results with the experimental data from other studies and the analysis results based on transverse isotropic theory. The developed damage model is applied to the analyses of structures with cracks under linear elastic condition. Numerical results show that the developed model can effectively analyze the global behavior of damaged structures.

  • PDF

상시진동 계측자료를 이용한 Nanjing TV탑의 강성계수 추정 (Identification of Stiffness Parameters of Nanjing TV Tower Using Ambient Vibration Records)

  • Kim Jae Min;Feng. M. Q.
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 봄 학술발표회 논문집
    • /
    • pp.291-300
    • /
    • 1998
  • This paper demonstrates how ambient vibration measurements at a limited number of locations can be effectively utilized to estimate parameters of a finite element model of a large-scale structural system involving a large number of elements. System identification using ambient vibration measurements presents a challenge requiring the use of special identification techniques, which ran deal with very small magnitudes of ambient vibration contaminated by noise without the knowledge of input farces. In the present study, the modal parameters such as natural frequencies, damping ratios, and mode shapes of the structural system were estimated by means of appropriate system identification techniques including the random decrement method. Moreover, estimation of parameters such as the stiffness matrix of the finite element model from the system response measured by a limited number of sensors is another challenge. In this study, the system stiffness matrix was estimated by using the quadratic optimization involving the computed and measured modal strain energy of the system, with the aid of a sensitivity relationship between each element stiffness and the modal parameters established by the second order inverse modal perturbation theory. The finite element models thus identified represent the actual structural system very well, as their calculated dynamic characteristics satisfactorily matched the observed ones from the ambient vibration test performed on a large-scale structural system subjected primarily to ambient wind excitations. The dynamic models identified by this study will be used for design of an active mass damper system to be installed on this structure fer suppressing its wind vibration.

  • PDF