• 제목/요약/키워드: Second-Order Constraints

검색결과 129건 처리시간 0.02초

A Study for Robustness of Objective Function and Constraints in Robust Design Optimization

  • Lee Tae-Won
    • Journal of Mechanical Science and Technology
    • /
    • 제20권10호
    • /
    • pp.1662-1669
    • /
    • 2006
  • Since randomness and uncertainties of design parameters are inherent, the robust design has gained an ever increasing importance in mechanical engineering. The robustness is assessed by the measure of performance variability around mean value, which is called as standard deviation. Hence, constraints in robust optimization problem can be approached as probability constraints in reliability based optimization. Then, the FOSM (first order second moment) method or the AFOSM (advanced first order second moment) method can be used to calculate the mean values and the standard deviations of functions describing constraints and object. Among two methods, AFOSM method has some advantage over FOSM method in evaluation of probability. Nevertheless, it is difficult to obtain the mean value and the standard deviation of objective function using AFOSM method, because it requires that the mean value of function is always positive. This paper presented a special technique to overcome this weakness of AFOSM method. The mean value and the standard deviation of objective function by the proposed method are reliable as shown in examples compared with results by FOSM method.

Enhanced Second-order Implicit Constraint Enforcement for Dynamic Simulations

  • Hong, Min;Welch, Samuel W.J.;Jung, Sun-Hwa;Choi, Min-Hyung;Park, Doo-Soon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제2권1호
    • /
    • pp.51-62
    • /
    • 2008
  • This paper proposes a second-order implicit constraint enforcement method which yields enhanced controllability compared to a first-order implicit constraints enforcement method. Although the proposed method requires solving a linear system twice, it yields superior accuracy from the constraints error perspective and guarantees the precise and natural movement of objects, in contrast to the first-order method. Thus, the proposed method is the most suitable for exact prediction simulations. This paper describes the numerical formulation of second-order implicit constraints enforcement. To prove its superiority, the proposed method is compared with the firstorder method using a simple two-link simulation. In this paper, there is a reasonable discussion about the comparison of constraints error and the analysis of dynamic behavior using kinetic energy and potential energy.

기계 구조의 강건 설계를 위한 최적화 기법의 개발 (Development of an Optimization Technique for Robust Design of Mechanical Structures)

  • 정도현;이병채
    • 대한기계학회논문집A
    • /
    • 제24권1호
    • /
    • pp.215-224
    • /
    • 2000
  • In order to reduce the variation effects of uncertainties in the engineering environments, new robust optimization method, which considers the uncertainties in design process, is proposed. Both design variables and system parameters are considered as random variables about their nominal values. To ensure the robustness of performance function, a new objective is set to minimize the variance of that function. Constraint variations are handled by introducing probability constraints. Probability constraints are solved by the advanced first order second moment (AFOSM) method based on the reliability theory. The proposed robust optimization method has an advantage that the second derivatives of the constraints are not required. The suggested method is examined by solving three examples and the results are compared with those for deterministic case and those available in literature.

MULTIOBJECTIVE SECOND-ORDER NONDIFFERENTIABLE SYMMETRIC DUALITY INVOLVING (F, $\alpha$, $\rho$, d)-CONVEX FUNCTIONS

  • Gupta, S.K.;Kailey, N.;Sharma, M.K.
    • Journal of applied mathematics & informatics
    • /
    • 제28권5_6호
    • /
    • pp.1395-1408
    • /
    • 2010
  • In this paper, a pair of Wolfe type second-order nondifferentiable multiobjective symmetric dual program over arbitrary cones is formulated. Weak, strong and converse duality theorems are established under second-order (F, $\alpha$, $\rho$, d)-convexity assumptions. An illustration is given to show that second-order (F, $\alpha$, $\rho$, d)-convex functions are generalization of second-order F-convex functions. Several known results including many recent works are obtained as special cases.

고속 안정성을 고려한 쇽업소버 최적 설계 (Optimal Design of Shock Absorber using High Speed Stability)

  • 이광기;모종운;양욱진
    • 한국자동차공학회논문집
    • /
    • 제6권4호
    • /
    • pp.1-8
    • /
    • 1998
  • In order to solve the conflict problem between the ride comfort and the road holding, the optimal design of shock absorber that minimizes the r.m.s. of sprung mass vertical acceleration and pitch rate with the understeer characteristics constraints in the high speed stability is proposed. The design of experiments and the nonlinear optimization algorithm are used together to obtain the optimal design of shock absorber. The second order regression models of the input variables(front and rear damping coefficients) and the output variables (ride comfort index and road holding one) are obtained by the central composite design in the design of experiments. Then the optimal design of shock absorber can be systematically adjusted with applying the nonlinear optimization algorithm to the obtained second order regression model. The frequency response analysis of sprung mass acceleration and pitch rate shows the effectiveness of the proposed optimal design of shock absorber in the sprung mass resonance range with the understeer characteristics constraints.

  • PDF

Analytical design of constraint handling optimal two parameter internal model control for dead-time processes

  • Tchamna, Rodrigue;Qyyum, Muhammad Abdul;Zahoor, Muhammad;Kamga, Camille;Kwok, Ezra;Lee, Moonyong
    • Korean Journal of Chemical Engineering
    • /
    • 제36권3호
    • /
    • pp.356-367
    • /
    • 2019
  • This work presents an advanced and systematic approach to analytically design the optimal parameters of a two parameter second-order internal model control (IMC) filter that satisfies operational constraints on the output process, the manipulated variable as well as rate of change of the manipulated variable, for a first-order plus dead time (FOPDT) process. The IMC parameters are designed to minimize a control objective function composed of the weighted sum of the error between the process variable and the set point, and the rate of change of the manipulated variable, and to satisfy the desired constraints. The feasible region of the constrained IMC control parameters was graphically analyzed, as the process parameters and the constraints varied. The resulting constrained IMC control parameters were also used to find the corresponding industrial proportional-integral controller parameters of a Smith predictor structure.

Energy constraint control in numerical simulation of constrained dynamic system

  • 윤석준
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.376-382
    • /
    • 1991
  • In the analysis of constrained holonomic systems, the Lagange multiplier method yields a system of second-order ordinary differential equations of motion and algebraic constraint equations. Conventional holonomic or nonholonomic constraints are defined as geometric constraints in this paper. Previous works concentrate on the geometric constraints. However, if the total energy of a dynamic system can be computed from the initial energy plus the time integral of the energy input rate due to external or internal forces, then the total energy can be artificially treated as a constraint. The violation of the total energy constraint due to numerical errors can be used as information to control these errors. It is a necessary condition for accurate simulation that both geometric and energy constraints be satisfied. When geometric constraint control is combined with energy constraint control, numerical simulation of a constrained dynamic system becomes more accurate. A new convenient and effective method to implement energy constraint control in numerical simulation is developed based on the geometric interpretation of the relation between constraints in the phase space. Several combinations of energy constraint control with either Baumgarte's Constraint Violation Stabilization Method (CVSM) are also addressed.

  • PDF

A Comparative Study of Korean and French Vowel Systems -An Experimental Phonetic and Phonological Perspective-

  • Kim, Seon-Jung;Lee, Eun-Yung
    • 음성과학
    • /
    • 제8권1호
    • /
    • pp.53-66
    • /
    • 2001
  • This paper aims to investigate the acoustic characteristics of the vowels attested in Korean and French and to seek a way of understanding them from a phonological point of view. We first compare the two vowel systems by measuring the actual frequencies of the formants using CSL. It is shown that the first and second formants vary in wider range in French compared to Korean. In order to understand the two vowel systems from a phonological point of view, we apply the theory of Licensing Constraints, proposed and developed by Kaye (1994), and Charette and Kaye (1994). We propose the licensing constraints placed upon the vowels both in Korean and French. For Korean, we propose the licensing constraints such that both elements I and U must be heads. For French, we claim the following licensing constraints: U in a headed expression must be head, A cannot be head, and Nothing can only license an expression A in it.

  • PDF

각종 제한조건하에서의 PI제어기의 최적설계에 관한 연구 (A Study on the Optimal Design of the PI Controller under the Various Constraints)

  • 오세준;진강규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제6권2호
    • /
    • pp.42-50
    • /
    • 1982
  • The controller, generally, is to be designed to optimize the system in somesence subject to some constraints. In this paper the method to determine the optimal parameters of the PI controller in the unity feed back control system is proposed. Here the sence of the optimal is to minimize the integral of the squared error under the constraints that the maximum absolute value of control input, maximum overshoot, rise time, etc., should be smaller than the pre-given values. In the analysis the traditional method and the state variable method are combined in order to reduce the computational procedures required in the design of PI controller. Therefore, the procedure proposed in the paper is usefully applicable to the controller system with a general second-order plant. Finally, the indicial response curves generated at the optimal state are compared with those of non-optimal state and the effectiveness of this method is assertained.

  • PDF

전송률 제한을 둔 페이딩 방송채널을 위한 중첩코딩 다중화 (Superposition Coding Multiplexing for Fading Broadcast Channels with Rate Constraints)

  • 이민;오성근;정병장
    • 한국통신학회논문지
    • /
    • 제33권11A호
    • /
    • pp.1072-1078
    • /
    • 2008
  • 이 논문에서는 전송 실효성 극대화를 위하여 사용자 별 최소 및 최대 전송률 제한을 두는 페이딩 방송채널에서 내림차순 전력할당에 기반한 효율적인 SCM (superposition coding multiplexing) 방법을 제안한다. 이 방법은 3단계로 구성되는데, 1단계에서는 전송 가능한 최대의 사용자 집합을 선정하고, 2단계에서는 사용자 별 송신전력의 내림차순으로 해당 사용자의 최소 전송률을 보장하는 최대 허용 간섭전력을 결정하는 방식으로 해당 사용자별 송신전력을 할당하고 잔여전력을 계산한다. 3단계에서는 2단계에서 잔여전력이 발생하는 경우에 수행하며, 내림차순 마지막 사용자부터 다시 오름차순으로 해당 사용자의 최대 전송률 제공에 필요한 전력 범위까지 최대로 추가 전력을 할당한다. 이 방법은 2단계 내림차순 할당에서 각 사용자가 자신의 최소 전송률 보장을 위하여 이후 사용자들로부터의 최대 허용 간섭전력을 고려하여 전력할당이 이루어졌으며 오름차순 추가 할당으로 인한 해당 사용자 이후 모든 순위 사용자들에 대한 전력 재할당을 필요로 하지 않는다. 따라서, 제안한 방법은 사용자 별 최소뿐만 아니라 최대 전송률 제한을 두는 경우, 특히 사용자 수가 많아질수록 계산이 더욱 효율적이다.