• Title/Summary/Keyword: Second order derivative

Search Result 129, Processing Time 0.036 seconds

Direct identification of aeroelastic force coefficients using forced vibration method

  • Herry, Irpanni;Hiroshi, Katsuchi;Hitoshi, Yamada
    • Wind and Structures
    • /
    • v.35 no.5
    • /
    • pp.323-336
    • /
    • 2022
  • This study investigates the applicability of the direct identification of flutter derivatives in the time domain using Rational Function Approximation (RFA), where the extraction procedure requires either a combination of at least two wind speeds or one wind speed. In the frequency domain, flutter derivatives are identified at every wind speed. The ease of identifying flutter derivatives in the time domain creates a paradox because flutter derivative patterns sometimes change in higher-order polynomials. The first step involves a numerical study of RFA extractions for different deck shapes from existing bridges to verify the accurate wind speed combination for the extraction. The second step involves validating numerical simulation results through a wind tunnel experiment using the forced vibration method in one degree of freedom. The findings of the RFA extraction are compared to those obtained using the analytical solution. The numerical study and the wind tunnel experiment results are in good agreement. The results show that the evolution pattern of flutter derivatives determines the accuracy of the direct identification of RFA.

A Finite Element Galerkin High Order Filter for the Spherical Limited Area Model

  • Lee, Chung-Hui;Cheong, Hyeong-Bin;Kang, Hyun-Gyu
    • Journal of the Korean earth science society
    • /
    • v.38 no.2
    • /
    • pp.105-114
    • /
    • 2017
  • Two dimensional finite element method with quadrilateral basis functions was applied to the spherical high order filter on the spherical surface limited area domain. The basis function consists of four shape functions which are defined on separate four grid boxes sharing the same gridpoint. With the basis functions, the first order derivative was expressed as an algebraic equation associated with nine point stencil. As the theory depicts, the convergence rate of the error for the spherical Laplacian operator was found to be fourth order, while it was the second order for the spherical Laplacian operator. The accuracy of the new high order filter was shown to be almost the same as those of Fourier finite element high order filter. The two-dimension finite element high order filter was incorporated in the weather research and forecasting (WRF) model as a hyper viscosity. The effect of the high order filter was compared with the built-in viscosity scheme of the WRF model. It was revealed that the high order filter performed better than the built in viscosity scheme did in providing a sharper cutoff of small scale disturbances without affecting the large scale field. Simulation of the tropical cyclone track and intensity with the high order filter showed a forecast performance comparable to the built in viscosity scheme. However, the predicted amount and spatial distribution of the rainfall for the simulation with the high order filter was closer to the observed values than the case of built in viscosity scheme.

Inactivation of Brain Succinic Semialdehyde Reductase by o-Phthalaldehyde

  • Song, M.S.;Lee, B.R.;Jang, S.H.;Cho, S.W.;Park, S.Y.
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.75-75
    • /
    • 1995
  • Succinic semialdehyde reductase, one of key enzyme of GABA shunt in CNS, is inactivated by o-phthalaldehyde, The inactivation followed pseudo first-order kinetics, and the second-order rate constant for the inactivation process was 28 M$\^$-1/s$\^$-1/ at pH 7.4 and 25$^{\circ}C$. The absorption spectrum(λ$\_$max/=377nm), fluorescence exitation(λ$\_$max/=340nm) and fluorescence emission spectra (λ$\_$max/=409nm) were consistent with the formation of an isoindole derivative in the catalytic site between a cysteine and a lysine residues about 3${\AA}$ apart. The substrate, succinic semialdehyde, did not protect the enzymatic activity against inactivation, whereas the coenzyme, NADPH, protected against o-phthalaldehyde induced inactivation of the enzyme. About 1 isoindole group per moi of the enzyme was formed following complete loss of the enzymatic activity. These results suggest that the amino acid residues of the enzyme participating in reaction with o-phthalaldehyde more likely residues at or near the coenzyme binding site.

  • PDF

Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator (압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어)

  • Jeon, Juncheol;Han, Young-Min;Nguyen, Quoc Hung;Han, Seung-Hun;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.331-336
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 l/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative (PD) controller is designed based on the $3^{rd}$-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

  • PDF

Dynamic Modeling and Control of Directional Control Valve Using Piezostack Actuator (압전 작동기를 이용한 방향 제어 밸브의 동적 모델링 및 제어)

  • Jeon, Jun-Cheol;Han, Young-Min;Nguyen, Quoc Hung;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.10
    • /
    • pp.1020-1026
    • /
    • 2012
  • This paper proposes a new type of high-frequency directional valve controlled by the piezostack actuator associated with displacement amplifier. As a first step, a dynamic model of directional valve which can operate at 200 Hz with a flow rate of 12 litter/min is derived by considering pressure drop and flow force. As a second step, an appropriate piezostack is selected by considering actuation force as well as field-dependent displacement. Subsequently, in order to control spool displacement and flow rate a proportional-derivative(PD) controller is designed based on the 3rd-order valve system. Control performances such as sinusoidal trajectory tracking of the spool displacement in time domain are evaluated. In addition, the field-dependent flow rate is also presented to verify the required performance of the valve system.

Cardiac Magnetic Resonance Imaging Using Multi-physiological Intelligent Trigger System (멀티 생체신호 동기 시스템을 이용한 심장자기공명영상)

  • Park, Jinho;Yoon, Jong-Hyun;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose : We proposed a multi-physiological signals based real-time intelligent triggering system(MITS) for Cardiac MRI. Induced noise of the system was analyzed. Materials and Methods: MITS makes cardiac MR imaging sequence synchronize to the cardiac motion using ECG, respiratory signal and second order derivative of $SPO_2$signal. Abnormal peaks due to arrhythmia or subject's motion are rejected using the average R-R intervals and R-peak values. Induced eddy currents by gradients switching in cardiac MR imaging are analyzed. The induced eddy currents were removed by hardware and software filters. Results: Cardiac MR images that synchronized to the cardiac and respiratory motion are acquired using MITS successfully without artifacts caused by induced eddy currents of gradient switching or subject's motion or arrhythmia. We showed that the second order derivative of the $SPO_2$ signal can be used as a complement to the ECG signals. Conclusion: The proposed system performs cardiac and respiratory gating with multi-physiological signals in real time. During the cardiac gating, induced noise caused by eddy currents is removed. False triggers due to subject's motion or arrhythmia are rejected. The cardiac MR imaging with free breathing is obtained using MITS.

PID-based Consensus and Formation Control of Second-order Multi-agent System with Heterogeneous State Information (이종 상태 정보를 고려한 이차 다개체 시스템의 PID 기반 일치 및 편대 제어)

  • Min-Jae Kang;Han-Ho Tack
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.103-111
    • /
    • 2023
  • Consensus, that aims to converge the states of agents to the same states through information exchanges between agents, has been widely studied to control the multi-agent systems. In real systems, the measurement variables of each agent may be different, the loss of information across communication may occur, and the different networks for each state may need to be constructed for safety. Moreover, the input saturation and the disturbances in the system may cause instability. Therefore, this paper studies the PID(Proportional-Integral-Derivative)-based consensus control to achieve the swarm behavior of the multi-agent systems considering the heterogeneous state information, the input saturations, and the disturbances. Specifically, we consider the multiple follower agents and the single leader agent modeled by the second-order systems, and investigate the conditions to achieve the consensus based on the stability of the error system. It is confirmed that the proposed algorithm can achieve the consensus if only the connectivity of the position graph is guaranteed. Moreover, by extending the consensus algorithm, we study the formation control problem for the multi-agent systems. Finally, the validity of the proposed algorithm was verified through the simulations.

Direct and Derivative Spectrophotometric Determination of Cobalt (II) in Microgram Quantities with 2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone (2-Hydroxy-3-methoxy Benzaldehyde Thiosemicarbazone를 사용하여 마이크로 그램 코발트(II)의 직접 및 유도 분광광도법에 의한 정량)

  • Kumar, A.Praveen;Reddy, P.Raveendra;Reddy, V.Krishna
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.4
    • /
    • pp.331-338
    • /
    • 2007
  • A rapid, simple and sensitive spectrophotometric method was developed for the determination of cobalt(II) using 2-hydroxy-3-methoxy benzaldehyde thiosemicarbazone (HMBATSC) as a analytical reagent. The metal ion in aqueous medium forms a brown coloured complex with HMBATSC at pH 6.0. The complex has two absorption maxima at 375 nm and 390 nm. At 375 nm, the reagent shows considerable absorbance, while at 390 nm the reagent does not shows appreciable absorbance. Hence, analytical studies were carried out at 390 nm. Beer's law is obeyed in the range of 0.059-2.357 μg ml-1 of Co(II). The molar absorptivity and Sandall's sensitivity of the method are 2.74×104 l mol-1 cm-1 and 0.0024 μg cm-2 respectively. The interference of various diverse ions has been studied. The complex has 1:2 [Co(II)- HMBATSC] stoichiometry. A method for the determination of cobalt(II) by second order derivative spectrophotometry has also been proposed. The proposed methods were applied for the determination of cobalt(II) in alloy steels, vitamin B12 and in some biological samples.

Near infrared spectroscopy for classification of apples using K-mean neural network algorism

  • Muramatsu, Masahiro;Takefuji, Yoshiyasu;Kawano, Sumio
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1131-1131
    • /
    • 2001
  • To develop a nondestructive quality evaluation technique of fruits, a K-mean algorism is applied to near infrared (NIR) spectroscopy of apples. The K-mean algorism is one of neural network partition methods and the goal is to partition the set of objects O into K disjoint clusters, where K is assumed to be known a priori. The algorism introduced by Macqueen draws an initial partition of the objects at random. It then computes the cluster centroids, assigns objects to the closest of them and iterates until a local minimum is obtained. The advantage of using neural network is that the spectra at the wavelengths having absorptions against chemical bonds including C-H and O-H types can be selected directly as input data. In conventional multiple regression approaches, the first wavelength is selected manually around the absorbance wavelengths as showing a high correlation coefficient between the NIR $2^{nd}$ derivative spectrum and Brix value with a single regression. After that, the second and following wavelengths are selected statistically as the calibration equation shows a high correlation. Therefore, the second and following wavelengths are selected not in a NIR spectroscopic way but in a statistical way. In this research, the spectra at the six wavelengths including 900, 904, 914, 990, 1000 and 1016nm are selected as input data for K-mean analysis. 904nm is selected because the wavelength shows the highest correlation coefficients and is regarded as the absorbance wavelength. The others are selected because they show relatively high correlation coefficients and are revealed as the absorbance wavelengths against the chemical structures by B. G. Osborne. The experiment was performed with two phases. In first phase, a reflectance was acquired using fiber optics. The reflectance was calculated by comparing near infrared energy reflected from a Teflon sphere as a standard reference, and the $2^{nd}$ derivative spectra were used for K-mean analysis. Samples are intact 67 apples which are called Fuji and cultivated in Aomori prefecture in Japan. In second phase, the Brix values were measured with a commercially available refractometer in order to estimate the result of K-mean approach. The result shows a partition of the spectral data sets of 67 samples into eight clusters, and the apples are classified into samples having high Brix value and low Brix value. Consequently, the K-mean analysis realized the classification of apples on the basis of the Brix values.

  • PDF

Facial Feature Detection and Facial Contour Extraction using Snakes (얼굴 요소의 영역 추출 및 Snakes를 이용한 윤곽선 추출)

  • Lee, Kyung-Hee;Byun, Hye-Ran
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.731-741
    • /
    • 2000
  • This paper proposes a method to detect a facial region and extract facial features which is crucial for visual recognition of human faces. In this paper, we extract the MER(Minimum Enclosing Rectangle) of a face and facial components using projection analysis on both edge image and binary image. We use an active contour model(snakes) for extraction of the contours of eye, mouth, eyebrow, and face in order to reflect the individual differences of facial shapes and converge quickly. The determination of initial contour is very important for the performance of snakes. Particularly, we detect Minimum Enclosing Rectangle(MER) of facial components and then determine initial contours using general shape of facial components within the boundary of the obtained MER. We obtained experimental results to show that MER extraction of the eye, mouth, and face was performed successfully. But in the case of images with bright eyebrow, MER extraction of eyebrow was performed poorly. We obtained good contour extraction with the individual differences of facial shapes. Particularly, in the eye contour extraction, we combined edges by first order derivative operator and zero crossings by second order derivative operator in designing energy function of snakes, and we achieved good eye contours. For the face contour extraction, we used both edges and grey level intensity of pixels in designing of energy function. Good face contours were extracted as well.

  • PDF