• 제목/요약/키워드: Second law analysis

검색결과 425건 처리시간 0.022초

Benford's Law and its Potential for Data Verification in Ecological Monitoring

  • Tae-Jun Choi;Woong-Bae Park;Dae-Hee Kim;Dohee Lee;Yuno Do
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제5권2호
    • /
    • pp.43-49
    • /
    • 2024
  • Ecological monitoring provides indispensable data for biodiversity conservation and sustainable resource management. However, the complexity and variability inherent in ecological monitoring data necessitate robust verification processes to ensure data integrity. This study employed Benford's Law, a statistical principle traditionally used in fields such as finance and health sciences, to evaluate the authenticity of ecological monitoring data related to the abundance of migratory bird species across various locations in South Korea. Benford's Law anticipates a specific logarithmic distribution of leading digits in naturally occurring numerical datasets. Our investigation involved two stages of analysis: a first-order analysis considering the leading digit and a second-order analysis examining the first two digits of bird population counts. While the first-order analysis displayed moderate conformity to Benford's Law that suggested overall data integrity, the second-order analysis revealed more pronounced deviations, indicating potential inconsistencies or inaccuracies in certain subsets of the data. Although our data did not perfectly align with Benford's Law, these deviations underscore the complex nature of ecological research, which is influenced by a multitude of environmental, methodological, and human factors.

물-물 열펌프시스템에 관한 열역학 제1 및 제2 법칙 해석 (First and Second Law Analysis of Water-to-Water Heat Pump System)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제27권4호
    • /
    • pp.87-95
    • /
    • 2007
  • Thermodynamic analysis of water-to-water heat pump system based on the first and second law of thermodynamics is carried out in this study. This analysis shows the distribution of irreversibilities throughout the system components and informs us of a potential improvements with the temperature condition changes. Source water temperature($T_A$), utilization water temperature($T_D$) and temperature differences (${\Delta}T_{AB}$, ${\Delta}T_{CD}$) are important factors to affect system performances such as component irreversibilities, exergetic efficiency and COPH. Advantages and disadvantages with these factors are discussed. Second law optimization phenomena with $T_A$ and ${\Delta}T_{AB}$ are also indicated.

무인전투기 물리적 전투력 분석 (Analysis of Physical Combat Power for Unmanned Combat Aerial Vehicle)

  • 민승식;오경원
    • 항공우주시스템공학회지
    • /
    • 제11권6호
    • /
    • pp.50-55
    • /
    • 2017
  • 본 논문은 란체스터 방정식을 이용하여 우리의 무인전투기(블루군)과 적 무인전투기(레드군) 간의 교전 결과를 예측하였다. 란체스터 법칙은 군단의 전력이 전투원 수에 비례한다는 제1법칙(linear law)과 전투원 수의 제곱에 비례한다는 제2법칙(square law)가 있다. 제1법칙은 게릴라전에 적합한 법칙이고 제2법칙은 전면전에 적합한 법칙으로 알려져 있으며 일반적으로 제2법칙이 많이 쓰인다. 란체스터의 제2법칙을 이용하여 교전 결과를 예측하였다. 교전에서 승리하기 위한 전투손실률 값은 물론 필요 전력수를 추산하였고, 우리 군의 피해를 1대 미만으로 만들기 위한 전력수도 예측하였다. 적 무인전투기와 아군 무인전투기의 전투 대수가 같을 경우 승리를 보장받으려면 전투손실률이 1:1.5 이상이 되어야 한다.

오토 사이클 기관의 열역학 제 2법칙적 성능 해석 (The Performance Analysis of Otto Cycle Engine by Thermodynamic Second Law)

  • 김성수;노승탁
    • 한국자동차공학회논문집
    • /
    • 제9권6호
    • /
    • pp.94-102
    • /
    • 2001
  • The thermodynamic second law analysis, which means available energy or exergy analysis, for the indicated performance of Otto cycle engine has been carried out. Each operating process of the engine is simplified and modeled into the thermodynamic cycle. The calculation of the lost work and exergy through each process has been done with the thermodynamic relations and experimental data. The experimental data were measured from the test of single cylinder Otto cycle engine which operated at 2500 rpm, WOT(Wide Open Throttle) and MBT(Minimum advanced spark timing for Best Torque) condition with different fuels: gasoline, methanol and mixture of butane-methanol called M90. Experimental data such as cylinder pressure, air and fuel flow rate, exhaust gas temperature, inlet gas temperature and etc. were used for the analysis. The proposed model and procedure of the analysis are verified through the comparison of the work done in the study with experimental results. The calculated results show that the greatest lost work is generated during combustion process. And the lost work during expansion, exhaust, compression and induction process follows in order.

  • PDF

Stress wave propagation in composite materials

  • Shen, Siyuan J.;Pfister, Jens C.;Lee, James D.
    • Structural Engineering and Mechanics
    • /
    • 제11권4호
    • /
    • pp.407-422
    • /
    • 2001
  • The linear constitutive relations and the failure criteria of composite materials made of thermoviscoelastic solids are presented. The post-failure material behavior is proposed and the dynamic finite element equations are formulated. However, a nonlinear term is kept in the energy equation because it represents the effect of the second law of thermodynamics. A general purpose nonlinear three-dimensional dynamic finite element program COMPASS is upgraded and employed in this work to investigate the interdependence among stress wave propagation, stress concentration, failure progression and temperature elevation in composite materials. The consequence of truthfully incorporating the second law of thermodynamics is clearly observed: it will always cause temperature rise if there exists a dynamic mechanical process.

확률론적 파괴역학 및 Size Effect Law에 적용을 위한 다중 균열 구조물에서의 에너지 해방률의 고차 미분값 계산 (Computation of the Higher Order Derivatives of Energy Release Rates in a Multiply Cracked Structure for Probabilistic Fracture Mechanics and Size Effect Law)

  • 황찬규
    • 한국전산구조공학회논문집
    • /
    • 제21권4호
    • /
    • pp.391-399
    • /
    • 2008
  • 본 논문에서는 다중 균열 구조물에서의 균열 진전에 따른 에너지 해방을 및 고차 미분값을 구할 수 있는 가상균열 진전법을 제시한다. 이 방법은 다중 균열 체계의 에너지 해방율과 고차 미분값이 단 한번의 해석으로 수행될 수 있는 장점이 있다. 예제에서 얻어진 해의 최대 오차는 에너지 해방율 0.2%, 일차 미분값 $2\sim3%$, 이차 미분값 $5\sim10%$이다 이 방법으로 구한 에너지 해방률의 미분값들은 파괴 확률을 구하거나, sire effect law에 적용될 수 있다.

Fick's second law 를 이용한 수냉식 발전기 고정자 권선의 건전성 예지 (Health prognostics of stator Windings in Water-Cooled Generator using Fick's second law)

  • 윤병동;장범찬;김희수;배용채
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 추계학술대회 논문집
    • /
    • pp.533-538
    • /
    • 2014
  • Power generator is one of the most important component of electricity generation system to convert mechanical energy to electrical energy. I t designed robustly to maintain high system reliability during operation time. But unexpected failure of the power generator could happen and it cause huge amount of economic and social loss. To keep it from unexpected failure, health prognostics should be carried out In this research, We developed a health prognostic method of stator windings in power generator with statistical data analysis and degradation modeling against water absorption. We divided whole 42 windings into two groups, absorption suspected group and normal group. We built a degradation model of absorption suspected winding using Fick's second law to predict upcoming absorption data. Through the analysis of data of normal group, we could figure out the distribution of data of normal windings. After that, we can properly predict absorption data of normal windings. With data prediction of two groups, we derived upcoming Directional Mahalanobis Distance (DMD) of absorption suspected winding and time vs DMD curve. Finally we drew the probability distribution of Remaining Useful Life of absorption suspected windings.

  • PDF

Asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers

  • Lebon, F.;Ronel-Idrissi, S.
    • Steel and Composite Structures
    • /
    • 제4권2호
    • /
    • pp.133-147
    • /
    • 2004
  • This paper deals with the asymptotic analysis of Mohr-Coulomb and Drucker-Prager soft thin layers bonded with elastic solids. In the first part, a mathematical analysis shows how to obtain an interface law that replaces mechanically and geometrically the thin layer. This law is strongly non-linear and couples microscopic and macroscopic scales. In the second part of the paper, the microscopic terms are quantified numerically, and it is shown that they can be neglected.

현열 축열조의 성능에 관한 엑서지 해석 (Exergy analysis on the storage performance of the sensible heat storage unit)

  • 김시범;권순석
    • 한국해양공학회지
    • /
    • 제2권1호
    • /
    • pp.176-182
    • /
    • 1988
  • The exergy analysis on the heat storage performance of the senible heat storage unit which consists of the heat storage material in the concentric annulus and the hot fluid flowing through the inner tube is performed. Heat transfer characteristics which are necessary for the performance of the exergy analysis is obtained from the energy balance equations and the second law of thermodynamics. As the index of heat storage performance, the exergy lossnumber $N_{s}$, and exergy storage ratio from the concepts of the second law of thermodynamics are defined. Results are ovtained for the grometry of the storage unit, the Biot number Bi, ambient temperature $T_{o}$ as parameters. From these results the exergy storage ratio can be considered as the efficiency of the hat storage unit and is introduced as a guide to design.

  • PDF

A Study of the Development of the Stress Optic Law of Photoelastic Experiment Considering Residual Stress

  • Suh, Jae-guk;Hawong, Jai-sug;Shin, Dong-chul
    • Journal of Mechanical Science and Technology
    • /
    • 제17권11호
    • /
    • pp.1674-1681
    • /
    • 2003
  • Photoelastic experiment has two significant problems. The first problem is manufacturing a model specimen for complicated shapes of structures. The second problem is residual stress contained in the photoelastic model material. In this paper, the stress optic law that can be effectively used on photoelastic model materials with residual stress is developed. By using the stress optic law as developed in this research, we can obtain good results in photoelastic experiments using model material in which residual stress is contained. It is assured that the stress optic law developed in this research is useful. Therefore, it is suggested that the stress optic law considering residual stress can be applied to the photoelastic experiment for the stress analysis of the composite materials or bi-materials in which the residual stress is easily contained.