• 제목/요약/키워드: SecB

검색결과 645건 처리시간 0.025초

『Chūn-qiū』Wáng-lì(『春秋』王曆)① - A Study on the Discussion of 'the Changes in the Names of Months and a Season(改月改時)' in the calendar of 『Chūn-qiū(春秋)』 since Song(宋) Dynasty (『춘추(春秋)』왕력(王曆)① - 송대(宋代) 이후 춘추력수(春秋曆數)의 개월(改月)·개시(改時) 논의에 대한 소고(小考))

  • Seo, Jeong-Hwa
    • (The)Study of the Eastern Classic
    • /
    • 제67호
    • /
    • pp.345-378
    • /
    • 2017
  • In the scriptures of "$Ch{\bar{u}}n-qi{\bar{u}}$(春秋)", the expression method of '$Ch{\bar{u}}n-w{\acute{a}}ng-zh{\bar{e}}ng-yu{\grave{e}}$(春王正月 : It's spring. It's the first month regulated by the king.)' was used as Jì-yuè-fǎ(紀月法 : the rules to determine the first month(正月)), the month of winter solstice was regarded as the first month of a year, and three years since then were named as $Ch{\bar{u}}n$(春 : spring). With regard to this "$Ch{\bar{u}}n-qi{\bar{u}}$"Wáng-lì("春秋"王曆 : the calendar regulated by the king of $Zh{\bar{o}}u$(周) dynasty in "$Ch{\bar{u}}n-qi{\bar{u}}$"), depending on whether Confucius(孔子) changed and recorded the names of the months and the season or not, there were three different arguments; the theory that 'Confucius changed the names of both the months and the season'(孔子改月 改時說), the view that 'Confucius changed the name of the season, not the names of the months'(孔子不改月 改時說), and then the theory that 'Confucius changed neither the names of the months nor the name of the season'(孔子不改月 不改時) since Song(宋) dynasty. The first view was taken by $Hh{\acute{u}}-{\bar{a}}n-gu{\acute{o}}$(胡安國) and $C{\grave{a}}i-ch{\acute{e}}n$(蔡沈), and the second theory was mentioned by Chéng-yí(程?) and Zhū-zǐ(朱子). The advocates of the third view had become remarkable since Ming(明) dynasty, and one of representatives was Wàng-yáng-míng(王陽明). All of them based their arguments on ancient scriptures and Confucian legal books, and there were cases of taking the same records as the support for different opinions. Confucius' so-called 'Chūn-qiū-bǐ-fǎ(春秋筆法 : the method to describe historical facts by making clear discrimination between right and wrong)' and '$Sh{\grave{u}}-{\acute{e}}r-b{\grave{u}}-zu{\grave{o}}$(述而不作 : the attitude to succeed virtuous men's achievements and only explain and describe them not creating and adding new contents)' could come from thoughts of $Z{\bar{u}}n-w{\acute{a}}ng$(尊王 : to respect the king with the virtues of benevolence, righteousness, propriety, wisdom and sincerity). Therefore, even though Confucius is assumed to have been the writer of "$Ch{\bar{u}}n-qi{\bar{u}}$(春秋)", whether he actually changed and recorded the names of the months and the season in the calendar used in "$Ch{\bar{u}}n-qi{\bar{u}}$" is doubtful. These theories on Confucius's intervention in the calendar of "$Ch{\bar{u}}n-qi{\bar{u}}$" hadn't been discussed as conflicting in reality until Tang(唐) dynasty.

Cryopreservation of Bovine IVM/IVF/IVC Hatched Blastocysts (체외생산된 소 완전탈출 배반포기배의 동결보존)

  • Lee, K.S.;Kim, E.Y.;Yi, B.K.;Nam, H.K.;Yoon, S.H.;Park, S.P.;Lim, J.H.
    • Korean Journal of Animal Reproduction
    • /
    • 제23권2호
    • /
    • pp.141-148
    • /
    • 1999
  • This study was to test whether the viability of bovine hatched blastocysts (HBs) can be maintained after vitrification and thawing. The HBs were produced in vitro at Day 9 and Day 10 after IVF, and they were classified to small (S-HBs; ø$\leq$300 ${\mu}{\textrm}{m}$) and large(L-HBs; ø>300 ${\mu}{\textrm}{m}$) on the basis of embryo diameter using eyepiece micrometer. As freezing solution, we used EFS35 which consisted of 35% ethylene glycol (EG), 18% ficoll, 0.3 M sucrose and 10% FBS added in mDPBS. Vitrification was taken by two-step method, the HBs were equilibrated in 10% EG for 5 minutes and then shortly exposed in EFS35 and plunged into L$N_2$for 30~45 sec. After thawing, the survival rates were assessed by the re-expansion of the blastocoel during 2 h and 16 h of culture. The results obtained in these experiments were summarized as follows; 1) When the blastocysts(40.8%) recovered at Day 8 after IVF were further cultured for 24 h(Day 9 after IVF) and 48 h(Day 10 after IVF), the rates of HBs were 20.5% and 6.7%, respectively. Also, the total cell number of HBs on Day 9 was significantly higher than that of HBs on Day 10 (p<0.01). 2) When the effects of freezing solution to the survival of Day 9 L-HBs were examined, the rate of vitrified group (75.7%) was significantly lower than 100% of control and exposed group(p<0.05). 3) When the survival rates of vitrified HBs according to size and developmental age were examined, the data of L-HBs (75.5%) and S-HBs(63.6%) on Day 9 were slightly higher than those of L-HBs(64.3%) and S-HBs(60.7%) on Day 10. 4) Also, when the in vitro survival of Day 9 HBs was evaluated under different culture condition after thawing, the result in culture medium only (79.3%) was significantly higher than 43.2% in co-culture group (p<0.05). These results demonstrated that bovine HBs can be successfully cryopreserved by two-step vitrification method using EFS35.

  • PDF

Unenhanced Breast MRI With Diffusion-Weighted Imaging for Breast Cancer Detection: Effects of Training on Performance and Agreement of Subspecialty Radiologists

  • Yeon Soo Kim;Su Hyun Lee;Soo-Yeon Kim;Eun Sil Kim;Ah Reum Park;Jung Min Chang;Vivian Youngjean Park;Jung Hyun Yoon;Bong Joo Kang;Bo La Yun;Tae Hee Kim;Eun Sook Ko;A Jung Chu;Jin You Kim;Inyoung Youn;Eun Young Chae;Woo Jung Choi;Hee Jeong Kim;Soo Hee Kang;Su Min Ha;Woo Kyung Moon
    • Korean Journal of Radiology
    • /
    • 제25권1호
    • /
    • pp.11-23
    • /
    • 2024
  • Objective: To investigate whether reader training improves the performance and agreement of radiologists in interpreting unenhanced breast magnetic resonance imaging (MRI) scans using diffusion-weighted imaging (DWI). Materials and Methods: A study of 96 breasts (35 cancers, 24 benign, and 37 negative) in 48 asymptomatic women was performed between June 2019 and October 2020. High-resolution DWI with b-values of 0, 800, and 1200 sec/mm2 was performed using a 3.0-T system. Sixteen breast radiologists independently reviewed the DWI, apparent diffusion coefficient maps, and T1-weighted MRI scans and recorded the Breast Imaging Reporting and Data System (BI-RADS) category for each breast. After a 2-h training session and a 5-month washout period, they re-evaluated the BI-RADS categories. A BI-RADS category of 4 (lesions with at least two suspicious criteria) or 5 (more than two suspicious criteria) was considered positive. The per-breast diagnostic performance of each reader was compared between the first and second reviews. Inter-reader agreement was evaluated using a multi-rater κ analysis and intraclass correlation coefficient (ICC). Results: Before training, the mean sensitivity, specificity, and accuracy of the 16 readers were 70.7% (95% confidence interval [CI]: 59.4-79.9), 90.8% (95% CI: 85.6-94.2), and 83.5% (95% CI: 78.6-87.4), respectively. After training, significant improvements in specificity (95.2%; 95% CI: 90.8-97.5; P = 0.001) and accuracy (85.9%; 95% CI: 80.9-89.8; P = 0.01) were observed, but no difference in sensitivity (69.8%; 95% CI: 58.1-79.4; P = 0.58) was observed. Regarding inter-reader agreement, the κ values were 0.57 (95% CI: 0.52-0.63) before training and 0.68 (95% CI: 0.62-0.74) after training, with a difference of 0.11 (95% CI: 0.02-0.18; P = 0.01). The ICC was 0.73 (95% CI: 0.69-0.74) before training and 0.79 (95% CI: 0.76-0.80) after training (P = 0.002). Conclusion: Brief reader training improved the performance and agreement of interpretations by breast radiologists using unenhanced MRI with DWI.

Evaluations of Spectral Analysis of in vitro 2D-COSY and 2D-NOESY on Human Brain Metabolites (인체 뇌 대사물질에서의 In vitro 2D-COSY와 2D-NOESY 스펙트럼 분석 평가)

  • Choe, Bo-Young;Woo, Dong-Cheol;Kim, Sang-Young;Choi, Chi-Bong;Lee, Sung-Im;Kim, Eun-Hee;Hong, Kwan-Soo;Jeon, Young-Ho;Cheong, Chae-Joon;Kim, Sang-Soo;Lim, Hyang-Sook
    • Investigative Magnetic Resonance Imaging
    • /
    • 제12권1호
    • /
    • pp.8-19
    • /
    • 2008
  • Purpose : To investigate the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar nuclear Overhauser effect/enhancement (NOE) interaction through 2D- correlation spectroscopy (COSY) and 2D- NOE spectroscopy (NOESY) techniques. Materials and Methods : All 2D experiments were performed on Bruker Avance 500 (11.8 T) with the zshield gradient triple resonance cryoprobe at 298 K. Human brain metabolites were prepared with 10% $D_2O$. Two-dimensional spectra with 2048 data points contains 320 free induction decay (FID) averaging. Repetition delay was 2 sec. The Top Spin 2.0 software was used for post-processing. Total 7 metabolites such as N-acetyl aspartate (NAA), creatine (Cr), choline (Cho), lutamine (Gln), glutamate (Glu), myo-inositol (Ins), and lactate (Lac) were included for major target metabolites. Results : Symmetrical 2D-COSY and 2D-NOESY pectra were successfully acquired: COSY cross peaks were observed in the only 1.0-4.5 ppm, however, NOESY cross peaks were observed in the 1.0-4.5 ppm and 7.9 ppm. From the result of the 2-D COSY data, cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methylene protons (CH2(3,$H{\alpha}$)) at 2.50ppm and methylene protons ($CH_2$,(3,$H_B$)) at 2.70 ppm were observed in NAA. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. From the result of 2-D NOESY data, cross peaks between the NH proton at 8.00 ppm and methyl protons ($CH_3$) were observed in NAA. Cross peaks between the methyl protons ($CH_3$(3)) at 1.33 ppm and methine proton (CH(2)) at 4.11 ppm were observed in Lac. Cross peaks between the methyl protons (CH3) at 3.03 ppm and methylene protons (CH2) at 3.93 ppm were observed in Cr. Cross peaks between the methylene protons ($CH_2$(3)) at 2.11 ppm and methylene protons ($CH_2$(4)) at 2.35 ppm, and between the methylene protons($CH_2$ (3)) at 2.11 ppm and methine proton (CH(2)) at 3.76 ppm were observed in Glu. Cross peaks between the methylene protons (CH2 (3)) at 2.14 ppm and methine proton (CH(2)) at 3.79 ppm were observed in Gln. Cross peaks between the methine proton (CH(5)) at 3.27 ppm and the methine proton (CH(4,6)) at 3.59 ppm, and between the methine proton (CH(1,3)) at 3.53 ppm and methine proton (CH(2)) at 4.05 ppm were observed in Ins. Conclusion : The present study demonstrated that in vitro 2D-COSY and NOESY represented the 3-bond and spatial connectivity of human brain metabolites by scalar coupling and dipolar NOE interaction. This study could aid in better understanding the interactions between human brain metabolites in vivo 2DCOSY study.

  • PDF

A study on the Greeting's Types of Ganchal in Joseon Dynasty (간찰(簡札)의 안부인사(安否人事)에 대한 유형(類型) 연구(硏究))

  • Jeon, Byeong-yong
    • (The)Study of the Eastern Classic
    • /
    • 제57호
    • /
    • pp.467-505
    • /
    • 2014
  • I am working on a series of Korean linguistic studies targeting Ganchal(old typed letters in Korea) for many years and this study is for the typology of the [Safety Expression] as the part. For this purpose, [Safety Expression] were divided into a formal types and semantic types, targeting the Chinese Ganchal and Hangul Ganchal of modern Korean Language time(16th century-19th century). Formal types can be divided based on whether Normal position or not, whether Omission or not, whether the Sending letter or not, whether the relationship of the high and the low or not. Normal position form and completion were made the first type which reveal well the typicality of the [Safety Expression]. Original position while [Own Safety] omitted as the second type, while Original position while [Opposite Safety] omitted as the third type, Original position while [Safety Expression] omitted as the fourth type. Inversion type were made as the fifth type which is the most severe solecism in [Safety Expression]. The first type is refers to Original position type that [Opposite Safety] precede the [Own Safety] and the completion type that is full of semantic element. This type can be referred to most typical and normative in that it equipped all components of [Safety Expression]. A second type is that [Safety Expression] is composed of only the [Opposite Safety]. This type is inferior to the first type in terms of set pattern, it is never outdone when it comes to the appearance frequency. Because asking [Opposite Safety] faithfully, omitting [Own Safety] dose not greatly deviate politeness and easy to write Ganchal, it is utilized. The third type is the Original position type showing the configuration of the [Opposite Safety]+Own Safety], but [Opposite Safety] is omitted. The fourth type is a Original position type showing configuration of the [Opposite Safety+Own Safety], but [Safety Expression] is omitted. This type is divided into A ; [Safety Expression] is entirely omitted and B ; such as 'saving trouble', the conventional expression, replace [Safety Expression]. The fifth type is inversion type that shown to structure of the [Own Safety+Opposite Safety], unlike the Original position type. This type is the most severe solecism type and real example is very rare. It is because let leading [Own Safety] and ask later [Opposite Safety] for face save is offend against common decency. In addition, it can be divided into the direct type that [Opposite Safety] and [Own Safety] is directly connected and indirect type that separate into the [story]. The semantic types of [Safety Expression] can be classified based on whether Sending letter or not, fast or slow, whether intimate or not, and isolation or not. For Sending letter, [Safety Expression] consists [Opposite Safety(Climate+Inquiry after health+Mental state)+Own safety(status+Inquiry after health+Mental state)]. At [Opposite safety], [Climate] could be subdivided as [Season] information and [Climate(weather)] information. Also, [Mental state] is divided as receiver's [Family Safety Mental state] and [Individual Safety Mental state]. In [Own Safety], [Status] is divided as receiver's traditional situation; [Recent condition] and receiver's ongoing situation; [Present condition]. [Inquiry after health] is also subdivided as receiver's [Family Safety] and [Individual Safety], [Safety] is as [Family Safety] and [Individual Safety]. Likewise, [Inquiry after health] or [Safety] is usually used as pairs, in dimension of [Family] and [Individual]. This phenomenon seems to have occurred from a big family system, which is defined as taking care of one's parents or grand parents. As for the Written Reply, [Safety Expression] consists [Opposite Safety (Reception+Inquiry after health+Mental state)+Own safety(status+Inquiry after health+Mental state)], and only in [Opposite safety], a difference in semantic structure happens with Sending letter. In [Opposite Safety], [Reception] is divided as [Letter] which is Ganchal that is directly received and [Message], which is news that is received indirectly from people. [Safety] is as [Family Safety] and [Individual Safety], [Mental state] also as [Family Safety Mental state] and [Individual Safety Mental state].