• Title/Summary/Keyword: Seawater intrusion

Search Result 127, Processing Time 0.03 seconds

Time Series Analysis and Forecasting of Electrical Conductivity in Coastal Aquifers (연안암반대수층의 해수침투경향성 파악을 위한 전기전도도 시계열 분석과 예측)

  • Ju, Jeong-Woung;Yeo, In Wook
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.267-276
    • /
    • 2017
  • Seawater intrusion into coastal fractured rock aquifer, resulting in groundwater contamination, is of serious concern in coastal areas of Jeolla Namdo, Korea, which heavily depends on groundwater resources. Time series analysis and forecasting were carried out to analyze and predict EC which is a major indicator of seawater intrusion. Two time series models of autoregressive integrated moving average (ARIMA) and seasonal autoregressive integrated moving average (SARIMA) were tested for suggesting appropriate time series model. Time series data of EC measured over one year showed a increasing trend with short periodic fluctuations, due to tidal effect and pumping, which indicated that EC time series data tended to be non-stationary. SARIMA model was found better fitted to observed EC than any other time series model. Time series analysis and modeling was found to be a useful tool to analyze EC at coastal fractured rock aquifer subject to seawater intrusion.

Climate change impact on seawater intrusion in the coastal region of Benin

  • Agossou, Amos;Yang, Jeong-Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.157-157
    • /
    • 2022
  • Recent decades have seen all over the world increasing drought in some regions and increasing flood in others. Climate change has been alarming in many regions resulting in degradation and diminution of available freshwater. The effect of global warming and overpopulation associated with increasing irrigated farming and valuable agricultural lands could be particularly disastrous for coastal areas like the one of Benin. The coastal region of Benin is under a heavy demographic pressure and was in the last decades the object of important urban developments. The present study aims to roughly study the general effect of climate change (Sea Level Rise: SLR) and groundwater pumping on Seawater intrusion (SWI) in Benin's coastal region. To reach the main goal of our study, the region aquifer system was built in numerical model using SEAWAT engine from Visual MODFLOW. The model is built and calibrated from 2016 to 2020 in SEAWAT, and using WinPEST the model parameters were optimized for a better performance. The optimized parameters are used for seawater intrusion intensity evaluation in the coastal region of Benin The simulation of the hydraulic head in the calibration period, showed groundwater head drawdown across the area with an average of 1.92m which is observed on the field by groundwater level depletion in hand dug wells mainly in the south of the study area. SWI area increased with a difference of 2.59km2 between the start and end time of the modeling period. By considering SLR due to global warming, the model was stimulated to predict SWI area in 2050. IPCC scenario IS92a simulated SLR in the coastal region of Benin and the average rise is estimated at 20cm by 2050. Using the average rise, the model is run for SWI area estimation in 2050. SWI area in 2050 increased by an average of 10.34% (21.04 km2); this is expected to keep increasing as population grows and SLR.

  • PDF

Application of electromagnetic methods to the investigation of seawater intrusion into coastal aquifer - A case study in the Hasunuma area, Chiba Prefecture, Japan

  • Mitsuhata Yuji;Uchida Toshihiro
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.335-339
    • /
    • 2003
  • The estimation of seawater intrusion into deep aquifers has been becoming an important subject in terms of site characterization for geological disposal of radioactive waste. Conventional direct-current resistivity methods have been used for ground water explorations and recently have been applied to environmental problems. However, electromagnetic methods are more practical and useful for such a deep investigation. We consider audio-frequency magnetotelluric (AMT) and surface-to-borehole electromagnetic (EM) tomography methods as promising tools for the investigation of deep aquifer. These methods were tested in the Hasunuma area, Chiba Prefecture, Japan. Although the study area is in an urban area, high-quality AMT data were acquired, which was mainly accomplished by night-time data recording and remote-reference data processing. One-dimensional inversion results of the AMT data revealed two extremely conductive zones, which is consistent with the electrical conductivity profile of pore water in core samples. It can be interpreted as the seawater intrusions into both zones. However, the chemical analysis of the groundwater sampled in the deep zone suggests that this groundwater must be fossil seawater that had been confined during sedimentation processes. In addition, the permeability coefficient of the deep layer is very low. Thus the deep conductive zone corresponds to the fossil seawater regarded as being difficult to flow.

  • PDF

Analysis of the Distribution Pattern of Seawater Intrusion in Coastal Area using the Geostatistics and GIS (지구통계기법과 GIS를 이용한 연안지역 해수침투 분포 파악)

  • 최선영;고와라;윤왕중;황세호;강문경
    • Spatial Information Research
    • /
    • v.11 no.3
    • /
    • pp.251-260
    • /
    • 2003
  • Distribution pattern of seawater intrusion was analyzed from the spatial distribution map of chloride using the geostatistics and CIS analyses. The chloride distribution map made by kriging(ordinary kriging and co-kriging) after exploratory spatial data analysis. Kriging provides an advanced methodology which facilitates quantification of spatial features and enables spatial interpolation. TDS, Na$^{+}$, Br$^{[-10]}$ were selected as second parameters of co-kriging which is higher value of correlation coefficients between chloride and others groundwater properties. Chloride concentration is highest in yeminchon and coastal area. And result in co-kriging was accurate than ordinary kriging.

  • PDF

Swelling and hydraulic characteristics of two grade bentonites under varying conditions for low-level radioactive waste repository design

  • Chih-Chung Chung;Guo-Liang Ren;I-Ting Chen;Che-Ju, Cuo;Hao-Chun Chang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1385-1397
    • /
    • 2024
  • Bentonite is a recommended material for the multiple barriers in the final disposal of low-level radioactive waste (LLW) to prevent groundwater intrusion and nuclear species migration. However, after drying-wetting cycling during the repository construction stage and ion exchange with the concrete barrier in the long-term repository, the bentonite mechanical behaviors, including swelling capacity and hydraulic conductivity, would be further influenced by the groundwater intrusion, resulting in radioactive leakage. To comprehensively examine the factors on the mechanical characteristics of bentonite, this study presented scenarios involving MX-80 and KV-1 bentonites subjected to drying-wetting cycling and accelerated ion migration. The experiments subsequently measured free swelling, swelling pressure, and hydraulic conductivity of bentonites with intrusions of seawater, high pH, and low pH solutions. The results indicated that the solutions caused a reduction in swelling volume and pressure, and an increase in hydraulic conductivity. Specifically, the swelling capability of bentonite with drying-wetting cycling in the seawater decreased significantly by 60%, while hydraulic conductivity increased by more than three times. Therefore, the study suggested minimizing drying-wetting cycling and preventing seawater intrusion, ensuring a long service life of the multiple barriers in the LLW repository.

A Study on Analysis of Freshwater-saltwater Interface in the Aquifer around Hwajinpo Lagoon on the Eastern Coast of Korea (동해안 화진포 석호 주변 대수층 내 담수-염수 경계면 분석에 관한 연구)

  • Kim, Minji;Kim, Dongjin;Jun, Seong-Chun;Lee, Jeonghoon
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.699-707
    • /
    • 2021
  • Hwajinpo Lagoon, located on the eastern coast of Korea, is a unique environment where freshwater and saltwater are mixed. Systematic management of the lagoon is required because it is a biodiversity-rich and area of high conservation value. The existing environment of the lagoon was evaluated by identifying the distribution of the groundwater level and groundwater flow characteristics. In addition, hydrogeochemical fluctuations were analyzed to determine the effect of seawater intrusion into the aquifer. The results demonstrate that the freshwater-saltwater interface is distributed throughout the aquifer and rises when water of the lagoon evaporates due to prolonged periods of low rainfall and high temperature, thereby increasing the possibility of seawater inflow through groundwater. As for the ionic delta properties (difference between the measured and theoretical concentration of mixed waters), it was estimated that the cation-exchange and precipitation reactions occurred in the aquifer due to seawater intrusion. The ratio of seawater mixed at each point was calculated, using oxygen isotopes and chloride as tracers, resulting in an average of 0.3 and a maximum of 0.87. The overall seawater mixing ratio appears to be distributed according to the distance from the coast. However, some of the results were deviated from the theoretical expectations and reflected the characteristics of the nearby aquifers. Further research on seasonal changes and simulation of seawater intrusion mechanisms is required for specific analysis.

Study on the Characteristics of Groundwater Movement Caused by Pumping During Drought Period and Estimation of Pumping Capacity in Natural River Estuary (자연하도 하구부에서 갈수시 양수에 의한 지하수 유독특성 및 취수능력 결정에 관한 연구)

  • 안승섭;최윤영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.6
    • /
    • pp.88-98
    • /
    • 1997
  • In this study, pumping capacity in the area of natural river estuary is estimated by the quantitative analysis using finite element method. The study area is Iga-ri pumping station in the estuary of Seojung-chun which runs to the East coast. First of aH, hydraulic properties and effects of different seawater levels are analyzed in this area. Variations of groundwater level caused by pumping and properties of seawater intrusion are analyzed, then compared the case of reinforcing the existing intake weir with the case of setting up an weir at the upper stream. The observed data of groundwater drawdown caused by pumping during drought period and seawater intrusion are compared with results of the analysis done by groundwater model using finite element method, and it is found that both are similar. Accordingly, groundwater model used in this study reflects well the variation of groundwater level caused by pumping.

  • PDF

Estimation of Seawater Intrusion Range in the Daechang Area Using 3D-FEMWATER Model (3D-FEMWATER 모델을 이용한 대창지역의 해수침투 범위추정)

  • Kim Kyoung-Ho;Park Jae-Sung;Lee Ho-Jin;Youn Ju-Heum
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.5
    • /
    • pp.3-13
    • /
    • 2005
  • The present study examined the 3 dimensional space distribution characteristics of sea water intrusion using data available from previous observations. For this study, we used 3D FEMWATER, which is a 3 dimensional finite element model. The target area was around Daechang-ri, Gimje-si, Jeollabuk-do. The area is relatively easy to formulate a conceptual model and has observation wells in operation for surveying sea water intrusion. Considering the uncertainty of numerical simulation, we analyzed sensitivity to hydraulic conductivity, which has a relatively higher effect. According to the result of the analysis, the variation of TDS concentration had an error range of $-1,336{\~}+107 mg/{\iota}$. Taking note that the survey data from observation wells were collected when the boundary between fresh water and sea water in the aquifer was in equilibrium, we set the range of time for numerical simulation and estimated the spatial distribution of TDS concentration as the range of sea water intrusion. According to the result of estimation, the spatial distribution of TDS concentration calculated when 1,440 days were simulated was taken as the range of sea water intrusion. Using the result of calculation, we can draw not only vertical views for a certain section but also horizontal views of different depth. These views will be greatly helpful in understanding the spatial distribution of the range of sea water intrusion. In addition, the result of this study can be used rationally in proposing an optimal quantity of water pumping through investigating the moving route of sea water intrusion over time in order to prevent excessive water pumping and to maintain an optimal number of water pumping wells per interval.

Fresh Water Injection Test to Mitigate Seawater Intrusion and Geophysical Monitoring in Coastal Area (해수침투 저감을 위한 담수주입시험 및 지구물리 모니터링)

  • Park, Kwon-Gyu;Shin, Je-Hyun;Hwang, Se-Ho;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.353-360
    • /
    • 2007
  • We practiced fresh water injection test to identify its applibility as a method of seawater intrusion mitigation technique, and monitored the change of borehole fluid conductivity and the behavior of injected fresh water using borehole multichannel electrical conductivity monitoring and well-logging, and DC resistivity and SP monitoring at the surface. Well-logging and multichannel EC monitoring showed the decrease of fluid conductivity due to fresh water injection. We note that such an injection effect lasts more than several month which means the applibility of fresh water injection as a seawater intrusion control technique. Although SP monitoring did not show meaningful results because of weather condition during monitoring and the defects of electrodes due to long operation time, DC resistivity monitoring showed its effectiveness and applicability as a monitoring and assessment techniques of injection test by means of imaging the behavior and the front of fresh water body in terms of the increase of resistivity with reasonable resolution. In conclusion, we note that geophysical techniques can be an effective method of monitoring and evaluation of fresh water injection test, and expect that fresh water injection may be an practical method for the mitigation of seawater intrusion when applied with optimal design of injection well distribution and injection rate based on geophysical evaluation.

Application of Electrical Resistivity Tomography Using Single Well in Seawater Intrusion Areas (해수침투지역에서 단일 시추공을 이용한 전기비저항 토모그래피 탐사의 적용성)

  • Song, Sung-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.369-376
    • /
    • 2007
  • Electrical resistivity tomography was carried out at seawater intrusion monitoring wells located at watershed in coastal areas. It is difficult to identify the characteristics of resistivity near monitoring well in case of using high signalto-noise ratio array due to the high conductivity condition in coastal aquifer although electrical resistivity survey is well adopted to delineate hydrogeological characteristics with the distribution of electrical resistivity. To improve the quality of electrical resistivity survey for two sites with seawater intrusion monitoring wells, inversion with the results of holeto-surface electrical resistivity tomography using single well was executed. The results of inversion for aquifer near wells were verified with the results of drilling log with the informations of fracture, electrical conductivity logging and normal resistivity logging. The inversion for aquifer near one of two wells was also performed at low and high tide with the same electrodes, respectively. From the inversion result, it is possible to obtain the resistivity images with high resolution and to identify the characteristics of aquifer related to seawater intrusion with tidal fluctuation. From this study, it was demonstrated that the hole-to-surface electrical resistivity tomography method accompanied with drilling log, electrical conductivity logging and normal resistivity logging would be useful to delineate the hydrogeological structures near monitoring wells in coastal areas.