• 제목/요약/키워드: Seawater heat

검색결과 154건 처리시간 0.023초

東南黃海에서 海水溫度의 EOF 分析 (Empirical Orthogonal Function Analysis of Seawater Temperature in the Southeastern Hwanghae)

  • 이흥재;방인권
    • 한국해양학회지
    • /
    • 제21권4호
    • /
    • pp.193-202
    • /
    • 1986
  • 황해 동남해역에서 해면과 30m층 수온의 시. 공간 변동성을 1967-1982 장기 수온자료의 variance 와 cmpirical orthogonal function(EOF)분석으로 연구하였다. 월평균 해면수온의 공간분포는, 남에서 북으로 감소하는 장기 년평균과 유사한 형태를 갖고 있다. 반면에 년평균 해면수온으로부터 계산한 분산은 남에서 북으로 증가한다. 해면 수온의 variance 가 경기만 남부해역을 제외한 연구해역에서 30m층 보다 2배이상 크다. EOF의 첫째와 둘째 모드가 계절변화를 갖고 있으며 해면과 30M층 variance의 97.6%와 85.2%를 각각설명하기 때문에 수온의 큰 variance 는 계절변화와 밀접한 관계가 있다. 겨울철 조사 해역 북부와 남부사이 수온의 차이가 크나 여름철에는 작아진다. 이것은 여름철 복사에 의한 해면의 열흡수가 열손실이 나 해양열이류보다 훨씬 크다는 것을 반영해준다. 여름철에 경기만 남부와 목포 주변 연안수가 조석혼합에 의해 외해수보다 수온이 낮게 나타난다.

  • PDF

Heat and mass transfer analysis in air gap membrane distillation process for desalination

  • Pangarkar, Bhausaheb L.;Sane, Mukund G.
    • Membrane and Water Treatment
    • /
    • 제2권3호
    • /
    • pp.159-173
    • /
    • 2011
  • The air gap membrane distillation (AGMD) process was applied for water desalination. The main objective of the present work was to study the heat and mass transfer mechanism of the process. The experiments were performed on a flat sheet module using aqueous NaCl solutions as a feed. The membrane employed was hydrophobic PTFE of pore size 0.22 ${\mu}m$. A mathematical model is proposed to evaluate the membrane mass transfer coefficient, thermal boundary layers' heat transfer coefficients, membrane / liquid interface temperatures and the temperature polarization coefficients. The mass transfer model was validated by the experimentally and fitted well with the combined Knudsen and molecular diffusion mechanism. The mass transfer coefficient increased with an increase in feed bulk temperature. The experimental parameters such as, feed temperature, 313 to 333 K, feed velocity, 0.8 to 1.8 m/s (turbulent flow region) were analyzed. The permeation fluxes increased with feed temperature and velocity. The effect of feed bulk temperature on the boundary layers' heat transfer coefficients was shown and fairly discussed. The temperature polarization coefficient increased with feed velocity and decreased with temperature. The values obtained were 0.56 to 0.82, indicating the effective heat transfer of the system. The fouling was observed during the 90 h experimental run in the application of natural ground water and seawater. The time dependent fouling resistance can be added in the total transport resistance.

ALDC 12종의 경도와 내식성에 미치는 어닐링 열처리의 영향 (The Effect of Annealing Heat Treatment Affecting Hardness and Corrosion Resistance of ALDC 12 Al Alloy)

  • 조황래;이명훈;이성열;문경만
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.95-96
    • /
    • 2006
  • ALDC 12 Al alloy is often corroded with some forms such as pitting corrosion, intergranular corrosion, and galvanic corrosion etc., in case of severe corrosion environment like seawater Annealing heat treatment was performed to improve the corrosion resistance of ALDC 12. Hardness was decreased with increasing of annealing temperature, however its corrosion resistance was clearly improved with increasing of annealing temperature.

  • PDF

공업용수배관의 응역부식균열 거동에 관한 연구 (Study on the Stress Corrosion Cracking Behaviour of Piping for Industrial Water)

  • 임우조;이진평
    • 수산해양기술연구
    • /
    • 제33권3호
    • /
    • pp.194-201
    • /
    • 1997
  • Recently with the rapid development in the industries such as an iron mill and chemical plants, these are enlarged by the use of the piping. This piping was encountered the stress corrosion cracking(SCC) because of stress by water pressure and residual stress of welding etc. under industrial water. In this paper, the behaviour of stress corrosion cracking on the weld zone of steel pipe piping water(SPPW) were investigated according to pre-heat before welding in natural seawater(specific resistance : 25$\Omega$-cm). The main results obtained are as follows :1) The stress corrosion cracking for SPPW and SB 41 is most ready to propagate in heat affected zone of weldment. 2) The SCC sensitivity of SPPW on weldment is more susceptible than that of SB 41. 3) The stress corrosion cracking growth of heat affected zone is delayed by the preheat and dry of base metal and electrode before welding.

  • PDF

온도가 막분리 투과성능에 미치는 영향 (The Effect of Feed Temperature On Permeate Flux During Membrane Separation)

  • 김광수;문덕수;김현주;이승원;지호;정현지;원혜정
    • 한국해양환경ㆍ에너지학회지
    • /
    • 제17권1호
    • /
    • pp.13-19
    • /
    • 2014
  • 막분리법에 의한 해수 담수화시 공급 원수 온도는 막성능에 영향을 미친다. 특히 폐열원을 이용하여 분리막 투과량을 증대시키고자 하는 경우에는 고온의 공급 원수가 분리막 성능에 미치는 영향을 정확히 분석하여 적용하는 것이 필요하다. 온도에 의한 막투과 성능 분석을 위해 $10^{\circ}C$에서 $60^{\circ}C$까지 공급 해수 온도를 변화시키면서 실험을 실시하였다. 온도가 상승하면서 투과량이 증가하는 경향을 물의 점성 변화와 막의 변화로 나누어서 분석하였다. NF 막에서는 온도에 따른 물의 점성 변화로 투과량 변화를 예측할 수 있었으나 RO막의 경우는 물의 점성변화로 예측한 투과량과 실험에 의한 투과량은 $60^{\circ}C$에서 30%정도 차이가 나타났다. 이는 RO막이 원수 온도가 상승함에 따라 막의 수축이 일어나 공극의 크기가 8%정도 감소함에 기인하는 것으로 추정된다. 따라서 막분리식 해수 담수화에서 투과량을 증대시키기 위한 온도 상승은 막변형이 일어나지 않는 범위 내에서 효과적으로 수행하여야 할 것이다.

A Study on the Performance and Flow Distribution of Fresh Water Generator with Plate Heat Exchanger

  • Jin, Zhen-Hua;Kim, Pil-Hwan;Lee, Gyeong-Hwan;Choi, Soon-Ho;Chung, Han-Shik;Jeong, Hyo-Min
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 동계학술발표대회 논문집
    • /
    • pp.611-617
    • /
    • 2008
  • Nowadays Plate Heat Exchanger (PHE) is widely used in different industries such as chemical, food and pharmaceutical process and refrigeration due to the efficient heat transfer performance, extreme compact design and efficient use of the construction material. In present study, discussed main conception of plate heat exchanger and applied in vacuum. PHE and aimed apply in the fresh water generator which installed in ship to desalinate seawater to fresh water use heat from engines. The experiment is proceeded to investigate the heat transfer between cold and hot fluid stream at different flow rate and supply temperature of hot fluid. Generated fresh water as outcome of the system. PHE is an important part of a condensing or evaporating system. One of common assumptions in basic heat exchanger design theory is that fluid is to be distributed uniformly at the inlet of each fluid side and throughout the core. However, in practice, flow mal-distribution is more common and can significantly reduce the heat exchanger performance. The flow and heat transfer are simulated by the k-$\varepsilon$ standard turbulence model. Moreover, the simulation contacted flow maldistribution in a PHE with 6 channels.

  • PDF

Small Nuclear Units에 의한 분산전원 및 계통연계(2) (Small Nuclear Units and Distributed Resource interconnection(2))

  • 이상성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.420-422
    • /
    • 2005
  • This paper introduces a new paradigm for energy supply system in near future which produces electric and district heat cogeneration with dispersed power grid with small nuclear power units. Recently, in nuclear field, a lot of effort has been done in nuclear major countries to develop small and medium reactor for enhancement of nuclear peaceful use as like in district heating, electric power generation, seawater desalination or hydrogen generation.

  • PDF

Development of the Fresh Water Generator

  • Park, Jun-Seop
    • 에너지공학
    • /
    • 제8권4호
    • /
    • pp.546-552
    • /
    • 1999
  • In order to obtain the highly effective thermal energy from jacket cooling water of propulsion diesel engines. a development of the Fresh Water Generator (FWG) with a capacity of 30 ton/day was implemented. Newly developed experimental devices and data acquisition system were used to evaluate the performance of the FWG. In this study experiments were performed for various driving pressures by varying the mass flowrate of cooling seawater with or without a heat source instead of jacket cooling water.

  • PDF

태양열 해수담수화를 위한 증발식 다중효용 담수기 성능평가 (Performance Evaluation of Multi Effect Distillation for Solar Thermal Desalination)

  • 주홍진;곽희열
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.74-79
    • /
    • 2011
  • This study was accomplished to evaluate the performance of Multi Effect Distillation(MED) for solar thermal desalination system. It was designed Multi effect distillation with $3m^3/day$ capacity and Shell&Tube type heat exchanger. Also, The effective heat transfer of Shell&Tube heat exchanger was used Cu(90%)-Ni(10%) corrugated tube. The parameters relating to the performance of Multi Effect Distillation are known as hot water flow rate. The experimental conditions for each parameters were $18^{\circ}C$ for sea water inlet temperature, $6m^3/hour$ sea water inlet volume flow rate, $75^{\circ}C$ for hot water inlet temperature, 2.4, 3.6, and $4.8m^3/hour$ for hot water inlet volume flow rate, respectively. The results are as follows, Development for Multi effect distillation was required about 40kW heat and 35kW cooling source to produce $3m^3/day$ of fresh water. And, Performance ratio of Development Multi effect distillation was about 2.0191.

  • PDF

Experimental Study on Combined Ocean Thermal Energy Conversion with Waste Heat of Power Plant

  • Jung, Hoon;Jo, Jongyoung;Chang, Junsung;Lee, Sanghyup
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제5권3호
    • /
    • pp.215-222
    • /
    • 2019
  • This work is experimental study of 10 kW specialized Combined Ocean Thermal Energy Conversion. We propose a C-OTEC technology that directly uses exhaust thermal energy from power station condensers to heat the working fluid (R134a), and tests the feasibility of such power station by designing, manufacturing, installing, and operating a 10 kW-pilot facility. Power generation status was monitored by using exhaust thermal energy from an existing power plant located on the east coast of the Korean peninsula, heat exchange with 300 kW of heat capacity, and a turbine, which can exceed enthalpy efficiency of 45%. Output of 8.5 kW at efficiency of 3.5% was monitored when the condenser temperature and seawater temperature are $29^{\circ}C$ and $7.5^{\circ}C$, respectively. The evaluation of the impact of large-capacity C-OTEC technology on power station confirmed the increased value of the technology on existing power generating equipment by improving output value and reducing hot waste water. Through the research result, the technical possibility of C-OTEC has been confirmed, and it is being conducted at 200 kW-class to gain economic feasibility. Based on the results, authors present an empirical study result on the 200 kW C-OTEC design and review the impact on power plant.