• Title/Summary/Keyword: Seawater heat

Search Result 153, Processing Time 0.023 seconds

Performance Characteristics of Flooded Type Evaporator for Seawater Cooling System with Heat Source Temperature of Mid-year (중간기 열원수 온도에 따른 만액식 해수냉각시스템의 성능 특성)

  • Yoon, Jung-In;Son, Chang-Hyo;Lee, Jeong-Mok;Kang, In-Ho
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.64-69
    • /
    • 2017
  • The purpose of this study is to investigate the performance characteristics of seawater cooling system for a fishing vessel. The circulation amount of refrigerant, condensation capacity, evaporation capacity, compression work and coefficient of performance(COP) were analyzed as the heat source temperature changed. The experimental setup consisted of an open-type compressor, a shell&tube type condenser, an evaporator and an expansion valve. The heat source was controlled by a constant temperature chamber. The main results of this study are summarized as follows. The condensation capacity increased with increasing heat source temperature, and it was confirmed that the effect of circulating amount of refrigerant was dominant. The amount of heat for vaporization was almost constant even though the temperature of the heat source increased. On the other hand, the compression power was increased. This is because the compression ratio increases as the condensation pressure, the enthalpy difference between inlet and outlet, the amount of circulating refrigerant increases. The performance coefficient of this system showed a tendency decreasing with increasing heat source temperature. Therefore, the basic data of the seawater cooling system for the maintenance of the catch line of the shore fishing boats was acquired through this study, and it is considered that it will be sufficient for the actual design.

A numerical study on heat transfer and pressure drop of plate heat exchanger using at seawater air conditioning with the variation of channel spaces (채널 간격 변화에 따른 해수냉난방용 판형 열교환기의 열전달과 압력강하에 대한 수치해석적 연구)

  • Kim, Hyeon-Ju;Lee, Ho-Saeng;Yoon, Jung-In;Son, Chang-Hyo;Jung, Young-Kwon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.704-709
    • /
    • 2014
  • Plate heat exchanger is being applied in the field of marine plants and chemical industry, such as OTEC and SWAC equipment. The study aims to interpret the heat transfer and pressure drop characteristics of plate heat exchangers to determine the geometric design parameters such as the channel space. In this study, heat transfer performance was numerically studied with respect to the variation of channel spaces. The results from numerical analysis indicated that the j factor was linearly decreased with the flowrate of seawater over every cases. As the flowrate of water increased with respect to channel spaces, the j factor decreased linearly. And the f factor decreased linearly with the increase of flowrate. When the channel space is 2.8~3.2 mm and 3.2~3.2 mm, respectively, the area goodness factor of plate heat exchanger showed the highest performance.

Computational Investigation of the Thermal Performances of Polymer Heat Sinks Passively-Cooled by Seawater for Thermoelectric Waste Heat Recovery (열전폐열회수를 위해 수동적으로 해수냉각되는 폴리머 히트싱크 열성능의 수치적 연구)

  • Kim, Kyoung Joon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.432-436
    • /
    • 2015
  • This study computationally explored the thermal performance of passively-cooled polymer heat sinks utilizing seawater. Polymer heat sinks are proposed as cooling modules of the cold sides of thermoelectric generators for waste heat recovery. 3-D Computational Fluid Dynamics (CFD) modelling was conducted for a detailed numerical study. Polyphenylene sulfide (PPS) and pyrolytic graphite (PG) were selected for the base materials of polymer heat sinks. The computational study evaluated the performance of the PPS and PG heat sinks at various fin numbers and fin thicknesses. Their performances were compared with those of aluminum (Al) and titanium (Ti) heat sinks. The study results showed that the thermal performance of the PG heat sink was 3~4 times better than that of the Ti heat sink. This might be due mainly to the better heat spreading of the PG heat sink than the Ti heat sink. The effect of the number of fins on the performance of the PG heat sink was dissimilar to the cases of the PPS and Ti heat sinks. This result can be explained by the interrelationships among heat spreading, surface area enhancement, and fluidic resistance incorporating with an increase in the number of fins.

Performance Comparison of Flooded Seawater Cooling System with respect to Heat Sink Temperature (열원수 온도에 따른 만액식 해수냉각시스템의 성능 비교)

  • Yoon, Jung-In;Choi, Kwang-Hwan;Son, Chang-Hyo;Kang, In-Ho;Kim, Chung-Lae;Seol, Sung-Hoon
    • Journal of Power System Engineering
    • /
    • v.20 no.2
    • /
    • pp.91-96
    • /
    • 2016
  • A fleet consists of a main vessel, light vessels and carrying vessels for purse seine fishery. Carrying vessels contains fish storages to maintain freshness of catches. Currently most carrying vessels applies the cooling system using plain ice though accompanied various shortcomings. Seawater cooling system directly chilling seawater are now in use on carrying vessels in some developed countries to make up for these shortcomings and maximize advantages. This research deals with necessity of seawater cooling systems and establishes system criteria using Aspentech HYSYS program, prior to an experiment of compact-scale seawater cooling system which now in progress of manufacture. Performance comparison on condensation capacity, mass flow rate of working fluid, compressor power input, pump power input and others of the seawater cooling system applying a flooded evaporator is conducted with respect to the temperature of surface seawater varying according to seasons. The result presents that mass flow rate circulating the system is increased about 16.7% as the temperature of surface seawater increases. At the same condition, condensation capacity and compressor input work also increase about 9.8% and 91.2%, respectively.

The Effect of Annealing Heat Treatment by Anodic Polarization Impedance Experiments for Cu-10%Ni Alloy

  • Lee, Sung-Yul;Moon, Kyung-Man;Jeong, Jae-Hyun;Lee, Myeong-Hoon;Baek, Tae-Sil
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.536-541
    • /
    • 2015
  • Copper has been used extensively as an electric wire or as a base material in various types of machineries owing to its good electrical and thermal conductivity and good fabricating property, as well as its good corrosion resistance compared to iron. Furthermore, the copper-nickel alloy has significant corrosion resistance in severely corrosive environments. Although, cupro-nickel alloy shows better corrosion resistance than the brass and bronze series, this alloy also corroded in severely corrosive environments, including aggressive chloride ions, dissolved oxygen, and condition of fast flowing seawater. In this study, and annealing treatment at various annealing temperatures was carried out on the cupro-nickel (Cu-10%Ni) alloy, and the effects of annealing were investigated using electrochemical methods, such as measuring the polarization and impedance behaviors under flowing seawater conditions. The corrosion resistance increased by annealing compared to non heat treatment in the absence of flowing seawater. In particular, the sample annealed at $200^{\circ}C$ exhibited the best corrosion resistance. The impedance in the presence of flowing seawater showed higher values than in the absence of flowing seawater. Furthermore, the highest impedances was observed in the sample annealed at $800^{\circ}C$, irrespective of the present of flowing seawater. Consequently, the corrosion resistance of cupro-nickel (Cu-10%Ni) alloy in a severely corrosive environment can be improved somewhat by annealing.

A Study on the Air Conditioning System by the Low Temperature Energy of the Deep Seawater (해양심층수 이용 냉방시스템에 관한 연구)

  • Park, Seong-Je;Kim, Hyo-Bong;Kim, Hyeon-Ju
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.253-256
    • /
    • 2006
  • This paper shows the study on application of the law temperature energy in the deep seawater. Deep, cold seawater has long been recognized as a valuable ocean energy resource. Recently, research and experimentation has been conducted on energy systems using deep seawater: deep seawater air conditioning system, ice-making device, salt and fresh-water manufacturing system and the Spray freeze drying system for extracting valuable material of the deep seawater. They are technically and economically feasible today: once installed, the energy is inexhaustible and there are no adverse environmental impacts. Because of the economy of scale in the air conditioning system, the seawater A/C system is most appropriate for supplying multiple buildings or hotels in a coastal area.

  • PDF

Analysis of energy-saving effects of recirculation aquaculture system using seawater source heat pumps and solar power generation (해수 열원 히트펌프와 태양광 발전을 이용한 순환여과식 양식장의 에너지 절감 효과 분석)

  • Jong-Hyeok RYU;Hyeon-Suk JEONG;Seok-Kwon JEONG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.2
    • /
    • pp.194-206
    • /
    • 2024
  • This study focuses on analyzing the energy-saving effects of the recirculation aquaculture system using seawater source heat pumps and solar power generation. Based on the thermal load analysis conducted using the transient system simulation tool, the annual energy consumption of the recirculation aquaculture system was analyzed and the energy-saving effects of utilizing the photovoltaic system was evaluated. When analyzing the heat load, the sea areas where the fish farms are located, the type of breeding tank, and the circulation rate of breeding water were taken into consideration. In addition, a method for determining the appropriate capacity for each operation time was examined when applying the energy storage system instead of the existing diesel generator as an emergency power, which is required to maintain the water temperature of breeding water during power outage. The results suggest that, among the four seas considered, Jeju should be estimated to achieve the highest energy-saving performance using the solar power generation, with approximately 45% energy savings.

Current Status of the Durability Study of Concrete Made with Various Cements in Korean Marine Environment (한국해양조건에서의 시멘트 종류별 콘크리트 내구 특성)

  • 박춘근;엄태형;정해문;임정렬;지정식
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.163-169
    • /
    • 1997
  • The sea water resistance of cement and concrete must be considered when it is used for construction on the seashore of in the ocean. The concrete specimens using seven type of cements such as ordinary Portland cement, moderate heat Portland cement, sulfate resistance Portland cement, type A. B. C Portland blastfurnace slag cement and Portland flyash cement were immersed for 10 years in seawater in Kunsan. This study proved that moderate heat Portland cement, sulfate resistance Portland cement, type A Portland blastfurnace slag cement had higher resistance for seawater.

  • PDF

Evaluation of energy consumption of gas hydrate and reverse osmosis hybrid system for seawater desalination (해수담수화 공정을 위한 가스하이드레이트-역삼투 공정의 에너지 소모량 평가)

  • Ryu, Hyunwook;Kim, Minseok;Lim, Jun-Heok;Kim, Joung Ha;Lee, Ju Dong;Kim, Suhan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.4
    • /
    • pp.459-469
    • /
    • 2016
  • Gas hydrate desalination process is based on a liquid to solid (Gas Hydrate, GH) phase change followed by a physical process to separate the GH from the remaining salty water. The GH based desalination process show 60.5-90% of salt rejection, post treatment like reverse osmosis (RO) process is needed to finally meet the product water quality. In this study, the energy consumption of the GH and RO hybrid system was investigated. The energy consumption of the GH process is based on the cooling and heating of seawater and the heat of GH formation reaction while RO energy consumption is calculated using the product of pressure and flow rate of high pressure pumps used in the process. The relation between minimum energy consumption of RO process and RO recovery depending on GH salt rejection, and (2) energy consumption of electric based GH process can be calculated from the simulation. As a result, energy consumption of GH-RO hybrid system and conventional seawater RO process (with/without enregy recovery device) is compared. Since the energy consumption of GH process is too high, other solution used seawater heat and heat exchanger instead of electric energy is suggested.