• Title/Summary/Keyword: Seawater desalination plant

Search Result 60, Processing Time 0.028 seconds

Numerical Simulation of Steam Jet Vacuum System in Multi-effect Desalination Plant (다중효용 담수 설비의 증기이젝터 진공장치에 관한 수치해석)

  • Ko, Sang-Cheol;Kim, Yong-Sun;Choi, Du-Youl;Kim, Pil-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.238-242
    • /
    • 2015
  • A steam jet vacuum system that will be implemented in a multi-effect desalination plant is numerically investigated. The objective of this study is to numerically investigate the performance characteristic of the steam jet vacuum system for the sea water distillation process. The effects of design parameter such as nozzle size and converging duct angle are discussed in order to get a better understanding of flow characteristics inside the steam ejector and subsequently pave the way for more optimum designs. The simulation results have been in good agreement with experimental data and have well reproduced the shock train phenomena of the throat region.

Application of Seawater Plant Technology for supporting the Achievement of SDGs in Tarawa, Kiribati (키리바시 타라와의 지속가능발전목표 달성 지원을 위한 해수플랜트 기술 활용)

  • Choi, Mi-Yeon;Ji, Ho;Lee, Ho-Saeng;Moon, Deok-Soo;Kim, Hyeon-Ju
    • Journal of Appropriate Technology
    • /
    • v.7 no.2
    • /
    • pp.136-143
    • /
    • 2021
  • Pacific island countries, including Kiribati, are suffering from a shortage of essential resources as well as a reduction in their living space due to sea level rise and coastal erosion from climate change, groundwater pollution and vegetation changes. Global activities to solve these problems are being progressed by the UN's efforts to implement SDGs. Pacific island countries can adapt to climate change by using abundant marine resources. In other words, seawater plants can assist in achieving SDGs #2, #6 and #7 based on SDGs #14 in these Pacific island countries. Under the auspice of Korea International Cooperation Agency (KOICA), Korea Research Institute of Ships and Ocean Engineering (KRISO) established the Sustainable Seawater Utilization Academy (SSUA) in 2016, and its 30 graduates formed the SSUA Kiribati Association in 2017. The Ministry of Oceans and Fisheries (MOF) of the Republic of Korea awarded ODA fund to the Association. By taking advantage of seawater resource and related plants, it was able to provide drinking water and vegetables to the local community from 2018 to 2020. Among the various fields of education and practice provided by SSUA, the Association hope to realize hydroponic cultivation and seawater desalination as a self-support project through a pilot project. To this end, more than 140 households are benefiting from 3-stage hydroponics, and a seawater desalination system in connection with solar power generation was installed for operation. The Association grows and supplies vegetable seedlings from the provided seedling cultivation equipment, and is preparing to convert to self-support business from next year. The satisfaction survey shows that Tarawa residents have a high degree of satisfaction with the technical support and its benefits. In the future, it is hoped that SSUA and regional associations will be distributed to neighboring island countries to support their SDGs implementations.

Market Evaluation of Seawater Desalination Plant considering International Water Scarcity and Expense Outlook by Use and Nation (해외 물 기근 현황과 용도별.국가별 자본지출 전망을 고려한 해수담수화 플랜트 시장성 평가)

  • Yang, Jeong-Seok;Sohn, Jinsik;Kang, Dae-Su
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.2
    • /
    • pp.178-187
    • /
    • 2011
  • National water supply, water resources available, the ratio of water supply to total water resources, and the ratio of water supply to available water resources were investigated to find global seawater desalination plant market for 163 nations. Water resources available per capita from 2007 to 2016, population in water scarcity region from 2011 to 2016, and the ratio of water scarcity population to total population were also analyzed for the countries. Annual percentage increase in total municipal drinking water capital expenditure and Annual percentage increase in total industrial water market were analyzed to predict the amount of water supply by use. 76 countries are suffering from water scarcity and 60 countries among the countries have coastal regions. Forty countries were selected by considering the considerable amount and highly increasing trend of water demand by use. Most countries show increasing trend of industrial water and 82 countries have more than 4% annual increasing rate for domestic water expense from 2008 to 2016 among 163 countries. Among the 76 water scarcity countries 16 countries were finally selected by considering expense prediction by use. Middle-east, east asia, pacific ocean, and west europe regions include most selected countries.

Study on the Necessity of Energy Recovery Device in Small Scale Reverse Osmosis Desalination Plant (소규모 역삼투 담수화 시설에서 에너지 회수장치의 필요성에 대한 연구)

  • Jeon, Jongmin;Kwak, Kyungsup;Kim, Noori;Jung, Jaehak;Son, Dong-Min;Kim, Suhan
    • Korean Chemical Engineering Research
    • /
    • v.55 no.6
    • /
    • pp.762-766
    • /
    • 2017
  • Energy recovery device (ERD) is used to save energy consumption in seawater reverse osmosis processes. However, small-scale ERDs (<$100m^3/d$) are hardly observed in seawater desalination market. In South Korea, most of seawater desalination plants for drinking water production are small-scaled and have been operated in island areas or on ships. Thus, the effect of ERDs for these small-scale SWRO processes should not be neglected. In this work, the small-scale SWRO processes are designed and analyzed in terms of energy consumption with/without ERD. The realistic efficiencies of high pressure pumps are considered for the energy analyses. The unit cost of electricity depending on the application place (e.g., inland and island areas, on ships) is investigated to calculate the energy cost for unit water production in various SWRO applications classified by plant capacity, application place, and the installation of ERD. As a result, the energy cost can be saved up to $1,640.4KRW/m^3$ when ERD is applied, and the saving effect increases at smaller plants on ships. In conclusion, the development of small-scale ERDs are necessary because small-scale SWRO processes are dominant in Korean seawater desalination market, and the electricity saving effect becomes higher at smaller-scaled system.

Membrane Biofouling of Seawater Reverse Osmosis Initiated by Sporogenic Bacillus Strain

  • Lee, Jin-Wook;Ren, Xianghao;Yu, Hye-Weon;Kim, Sung-Jo;Kim, In-S.
    • Environmental Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.141-147
    • /
    • 2010
  • The objective of this study was to assess the biofouling characteristics of the Bacillus biofilm formed on reverse osmosis (RO) membranes. For the study, a sporogenic Bacillus sp. was isolated from the seawater intake to a RO process, with two distinct sets of experiments performed to grow the Bacillus biofilm on the RO membrane using a lab-scale crossflow membrane test unit. Two operational feds were used, 9 L sterile-filtered seawater and 109 Bacillus cells, with flow rates of 1 L/min, and a constant 800 psi-pressure and pH 7.6. From the results, the membrane with more fouling, in which the observed permeate flux decreased to 33% of its initial value, showed about 10 and 100 times greater extracellular polymeric substances and spoOA genes expressions, respectively, than the those of the less fouled membrane (flux declined to 20% of its initial value). Interestingly; however, the number of culturable Bacillus sp. in the more fouled membrane was about 10 times less than that of the less fouled membrane. This indicated that while the number of Bacillus had less relevance with respect to the extent of biofouling, the activation of the genes of interest, which is initiative of biofilm development, had a more positive effect on biofouling than the mass of an individual Bacillus bacterium.

A study on the required energy of a thermal type desalination plant (증발식 해수담수화설비의 에너지 소모량에 관한 연구)

  • Song, Chi-Sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.38 no.9
    • /
    • pp.1094-1100
    • /
    • 2014
  • TEvaporator is key component in food, seawater distillation and waste water treatment system, which is basically to concentrate the raw liquid by evaporating the pure water under vacuum condition. The liquid concentration is performed through the membrane, electro-dialysis and evaporation. In this study, only the evaporating type was treated for evaluating the economic analysis with the various operating conditions. The results of this study showed that the performance of the OT-MSF desalination system is increased with decreasing the temperature difference between the neighboring evaporators, which means that the number of evaporators is increased, under the determined design conditions.

Optimal Design of Submarine Pipeline for Intake and Discharge of Seawater Desalination Facilities (해수 담수화 설비의 취수 및 배출수 해저 배관 최적화 설계)

  • Choi, Gwangmin;Han, Inseop
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.31 no.6
    • /
    • pp.599-609
    • /
    • 2017
  • Desalination plants have been recently constructed in many parts of the world due to water scarcity caused by population growth, industrialization and climate change. Most seawater desalination plants are designed with a submarine pipeline for intake and discharge. Submarine pipelines are installed directly on the bottom of the water body if the bottom is sandy and flat. Intake is located on a low-energy shoreline with minimal exposure to beach erosion, heavy storms, typhoons, tsunamis, or strong underwater currents. Typically, HDPE (High Density Polyethylene) pipes are used in such a configuration. Submarine pipelines cause many problems when they are not properly designed; HDPE pipelines can be floated or exposed to strong currents and wind or tidal action. This study examines the optimal design method for the trench depth of pipeline, analysis of on-bottom stability and dilution of the concentrate based on the desalination plant conducted at the Pacific coast of Peru, Chilca. As a result of this study, the submarine pipeline should be trenched at least below 1.8 m. The same direction of pipeline with the main wind is a key factor to achieve economic stability. The concentrate should be discharged as much as high position to yield high dilution rate.

Status-of-arts of Desalination Technology (해수담수화 산업기술동향)

  • Ko, Eun-Ok;Moon, Jong-Duck;Park, Jong-Man
    • Membrane Journal
    • /
    • v.20 no.3
    • /
    • pp.185-196
    • /
    • 2010
  • Korea is presently the leading country in global desalination industry and has been investing a large amount of money and human resources in development of new core technologies to increase its' share of global market. In this paper, we reviewed world-wide trends of the advanced water industry and outlined various seawater desalination technologies developed so far. We also made some analysis on the directions and results of the government-lead R&D sponsorship in the field of seawater-freshening technology. Present studies showed that we need an institutional strategy to help domestic companies guarantee the credibility of the technologies developed by themselves based upon their experience of plant operation. Futhermore, strategic R&D programs to develope original technologies and localization of key components for desalination plants should be preceded in the near future.

Biofouling and Microbial Induced Corrosion -A Case Study

  • Mohammed, R.A.;Helal, A.M.;Sabah, N.
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.27-34
    • /
    • 2008
  • In industrial and fluid handling systems, frequently the protective film forming materials suffer from severe corrosion due to microbial effects. As an example, various micro-organisms, including bacteria, exist in seawater normally fed to power and desalination plants. Unless seawater intakes are properly disinfected to control these microbial organisms, biological fouling and microbial induced corrosion (MIC) will be developed. This problem could destroy metallic alloys used for plant construction. Seawater intakes of cogeneration plants are usually disinfected by chlorine gas or sodium hypochlorite solution. The dose of disinfectant is designed according to the level of contamination of the open seawater in the vicinity of the plant intake. Higher temperature levels, lower pH, reduced flow velocity and oxidation potential play an important role in the enhancement of microbial induced corrosion and bio-fouling. This paper describes, in brief, the different types of bacteria, mechanisms of microbiological induced corrosion, susceptibility of different metal alloys to MIC and possible solutions for mitigating this problem in industry. A case study is presented for the power plant steam condenser at Al-Taweelah B-station in Abu Dhabi. The study demonstrates resistance of Titanium tubes to MIC.