• 제목/요약/키워드: Seating force

검색결과 10건 처리시간 0.025초

Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces

  • Ozer, Fusun;Pak-Tunc, Elif;Dagli, Nesrin Esen;Ramachandran, Deepika;Sen, Deniz;Blatz, Markus Bernhard
    • The Journal of Advanced Prosthodontics
    • /
    • 제10권5호
    • /
    • pp.340-346
    • /
    • 2018
  • PURPOSE. In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS. Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks ($5{\times}5{\times}3mm$) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS. Overall mean scores indicated that Co-Cr showed the highest SBS values ($1.96{\pm}0.4$) (P<.00), while Au-Pt showed the lowest among all metals tested ($1.57{\pm}0.4$) (P<.00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P<.00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score ($3.59{\pm}0.07$) among all cements tested (P<.00), while the resin-based temporary luting cement RXT showed the lowest ($0.39{\pm}0.07$) (P<.00). CONCLUSION. Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.

휠체어 추진속도 및 등받이 경사각도에 따른 둔부 압력 변화 특성 (Characteristics of the Buttock Interface Pressure According to Wheelchair Propulsion Speed and Various Back Reclined Seating Position)

  • 권혁철;공진용
    • 한국전문물리치료학회지
    • /
    • 제12권2호
    • /
    • pp.1-10
    • /
    • 2005
  • Pressure ulcers are serious complications of tissue damage that can develop in patients with diminished pain sensation and diminished mobility. Pressure ulcers can result in irreversible tissue damage caused by ischemia resulting from external loading. There are many intrinsic and extrinsic contributors to the problem, including interface tissue pressure, shear, temperature, moisture, hygiene, nutrition, tissue tolerance, sensory and motor dysfunction, disease and infection, posture, and body support systems. The purposes of this study were to investigate the relationship between buttock interface pressure and seating position, wheelchair propulsion speed. Seated-interface pressure was measured using the Force Sensing Array pressure mapping system. Twenty subjects propelled wheelchair handrim on a motor-driven treadmill at different velocities (40, 60, 80 m/min) and seating position used recline ($100^{\circ}$, $110^{\circ}$, $120^{\circ}$) with a wheelchair simulator. Interface pressure consists of average (mean of the pressure sensor values) and maximum pressure (highest individual sensor value). The results of this study were as follows; No significant correlation in maximum/average pressure was found between a static position and a 40 m/min wheelchair propulsion (p>.05). However, a significant increase in maximum/average pressure were identified between conditions of a static position and 60 m/min, and 80 m/min wheelchair propulsion (p<.05). No significant correlation in maximum pressure were found between a $90^{\circ}$ recline (neutral position) and a $100^{\circ}$, $110^{\circ}$, or $120^{\circ}$ recline of the wheelchair back (p>.05). No significant difference in average pressure was found between conditions of a $90^{\circ}$ recline and both a $100^{\circ}$ and $110^{\circ}$ recline of wheelchair back. However, a significant reduction in average pressure was identified between conditions of a $90^{\circ}$ and $120^{\circ}$ recline of wheelchair back (p<.05). This study has shown some interesting results that reclining the seat by $120^{\circ}$ reduced average interface pressure, including the reduction or prevention in edema. And interface pressure was greater during dynamic wheelchair propulsion compared with static seating. Therefore, the optimal seating position and seating system ought to provide postural control and pressure relief. We need an education on optimal seating position and a suitable propulsion speeds for wheelchair users.

  • PDF

VVT용 전자식 흡/배기 밸브 시스템 설계를 위한 해석 및 실험 (The Analysis and Experiments for the Design of Electro-mechanical Variable Valve Train System)

  • 박승현;오성진;이종화;박경석;김도중
    • 한국자동차공학회논문집
    • /
    • 제9권3호
    • /
    • pp.60-67
    • /
    • 2001
  • As a method of variable valve train(VVT), Electro-Mechanical Valve(EMV) has been studied. Compared with conventional VVT system, the EMV system has a relatively simple structure. The system has two electromagnets, springs and an armature. The system can be operated by reciprocal action between armature and two electromagnets. And, the operating event can be controlled by electrical signal from controller. Therefore, reduction of emission and fuel consumption can be achieved through valve event control at each engine operating condition. In this study, characteristics of EMV system were investigated by simulations and experiments. The results of simulation and experiment show that the core shape and material characteristics are dominant parameters on magnetic force and delay time. In order to apply the system to commercial engine, it has a compact size and high stiffness springs(50N/mm) to increase the valve speed. Because of high valve seating velocity, loud noise and high impact force generated, which can lead to reduction of actuator durability. Therefore, further research is required to reduce valve seating velocity.

  • PDF

운전 자세에서의 인체진동 평가용 시험용 더미 개발 (Development of a Test Dummy for the Evaluation of Driver's Response to Vehicle Vibration)

  • 장한기;홍석인;송치문;김기선;이정훈;김광준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 춘계학술대회논문집
    • /
    • pp.105-108
    • /
    • 2004
  • This paper introduces a process of the development of a vibration test dummy for the posture of inclined seating. Experimental devices was invented to measure apparent mass curves on the contact point of the hip and the back of a seated human body. During the excitation of a rigid seat secured to a hydraulic exciter, force and acceleration signals were measured on the contact points to determine the apparent mass. In order to describe nonlinear characteristics of a human body, seven levels of Gaussian random signal were used for the base excitation. The modeling of the human body will be performed using measured apparent mass curves. The modeling will be done by June and the prototype of the test dummy will be invented in the following six months.

  • PDF

퍼스널 모빌리티(Personal Mobility)의 주행안전성 평가지표 연구 (A Study on Driving Safety Evaluation Criteria of Personal Mobility)

  • 박범진;노창균;김지수
    • 한국ITS학회 논문지
    • /
    • 제17권5호
    • /
    • pp.1-13
    • /
    • 2018
  • 세그웨이를 시작으로 다양한 형태의 퍼스널 모빌리티(PM)가 판매 및 이용되고 있다. PM이 갖춘 편의성으로 인해 급격히 보급되고 있으며, 이와 함께 안전사고도 급증하고 있는 추세이다. 이와 같은 추세에 발맞추어 PM과 관련된 다양한 연구 및 제도가 마련되고 있다. 그러나 안전도 향상을 위한 방안으로는 제품 자체의 기능적 인증분야로 한정되어 있으며, 탑승자의 주행 안전성에 대한 평가기준 및 지표 마련은 이루어진 바 없다. 본 논문에서는 PM의 주행 안전성 평가에 적용 가능한 지표를 검토하였으며, 도출된 지표를 이용하여 3종의 PM과 보행에 대해 안전성 평가를 수행하여 결과를 제시하였다. 타 분야에서 활용되고 있는 지표 중 최종 선정한 지표는 COG(Center of the gravity)와 SM(Stability Metric)이다. COG는 무게중심이 중력 방향에서 벗어난 정도를 평가하는 지표이며 SM은 PM이 움직일 때 발생되는 힘을 내부의 힘, 각운동량, 지면반발력으로 보고 정규화한 값으로 움직이지 않을 때는 0이 되며 음의 값은 전복됨을 의미하므로 PM의 주행안전성 평가에 활용 가능하다. COG의 경우 평균값과 분산값을 기준으로 안전도를 평가하여 결론을 제시하였다. 3종의 PM 중 Scooter의 경우 탑승형태를 입식과 좌식으로 구분하여 시행하였으며, 그 결과 COG의 움직임으로 평가하였을 경우 wheel chair가 평균 6.54mm로 가장 안전하며 kickboard가 가장 불안전한 것으로 분석되었다. SM분석 결과, wheel chair가 가장 안전하며, 좌식 탑승의 형태가 입식보다 안전한 것으로 평가되었다. 이와 같은 분석 방법을 이용하여 향후 보다 다양한 제품군에 대한 주행안전성 평가가 필요할 것으로 판단되며, 운전자 중심 뿐만 아니라 기기 자체에 대한 주행안전성 평가가 함께 이루어져야 할 것이다.

Sealer의 사용이 임프란트 나사의 안정성에 미치는 영향 (A STUDY ON THE STABILITY OF IMPLANT SCREW BY USE OF THE SEALER)

  • 이흥태;김낙형;정재헌
    • 대한치과보철학회지
    • /
    • 제39권4호
    • /
    • pp.366-375
    • /
    • 2001
  • The objective of this study was to investigate the surface contact and screw joint stability between screw and implant interface by use of sealer. The implants evaluated in this study were Steri-Oss futures(Hexlock $3.8D{\times}10mm$: Steri-Oss, Yorba Linda, CA), and Steri-Oss staight abutment. Titanium alloy screws were used to secure abutments to implants. The other titanium alloy screws applicating sealer(Impla-Seal, Implant Support Systems, Inc. Irvine, CA) were used to secure abutments to implants. In one another sample, 6kg of force was applied during simulated intraoral movements after abutment screws were secured to the implants with sealer. All samples were cross sectioned with sandpaper and polished with $0.1{\mu}m\;Al_2O_3$. Then samples were recorded with an scanning electron microscope. The results were as follows : 1. In the case of titanium alloy screw, irregular contacts and relatively large gap were present at thread mating surface. Also abutment screw/implant interface demonstrate incomplete seating and only one surface contact of threads between implant and screw. 2. In the case of titanium alloy screw applecating sealer, sealer was present between implant and screw. Therefore implant and screw had relatively close and tight contact without the presence of large gap. 3. On the other hand, in the case of titanium alloy screw applicating sealer and dynamic loading of suprastructures, sealer was partially present between implant and screw. Conclusively, sealer fills voids, creating a barrier to moisture and bacteria. In addition, loading of suprastructures may change the situation and limit the indications for gap sealing.

  • PDF

둔부의 압력분포 비교를 이용한 고령자용 기립보조의자의 기립 최적각도 제안 (A proposal of the Optimal Angle of Standing Assistant Chair for the Elderly by Comparing of Pressure Distribution on Hip)

  • 장성호;백지훈;이중언;;강석완;이왕범
    • 산업경영시스템학회지
    • /
    • 제41권3호
    • /
    • pp.108-114
    • /
    • 2018
  • One of the most performed action in daily life is standing up from sitting position. As the population of the world is aging at the high rates, people may face problems with reduced muscle strength as well as psychological changes. This can lead elderly people having difficulties with standing up from chair. Now, with the aging trend worldwide, products are being developed that can support the lives of the elderly. This study examines the distribution of hip pressure in relation to the seating positions of the standing assistance seats under development to prevent standing up accidents in older adults. The currently developing standing assistant chair designed to tilt to a maximum angle of 25 degrees. At over $25^{\circ}$, design considers that older people are at risk of thrown back out of that force and that the forces exerted on their arms and legs can be a significant burden to older people. By considering danger of higher than $25^{\circ}$ for older people which is experimented in the basis of static capturing approach in previous papers, it is experimented people with age group of 20~60 on $0^{\circ}$ to $25^{\circ}$ tilting angle on the basis of dynamic capturing method in order to pick convenient angle of inclination. Moreover, tried to find the optimum angle by comparing the hip pressure distribution when seated at the edge of the seat and at the center of the seat with the pressure distribution sensor.

DESIGN OF AIR SEAT CUSHION ORTHOSIS FOR PLEGIA

  • Hong, Jung-Hwa;Kim, Gyoo-Suk;Kim, Jong-Kwon;Mun, Mu-Seong;Ryu, Jei-Cheong;Lee, In-Huk;Lee, Jong-Keun
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.121-123
    • /
    • 2002
  • The design of an air seat cushion for preventing decubitus ulcer includes many design factors such as the even distribution of interface pressure, the minimization of mean and peak interface pressure values, and the reduction of interface shear force and pressure gradient. It involves the anatomic condition of plegia's buttock as well as air pressure in air cells of cushion. As a result, a suitable design of the cushion satisfying the all requirements is a difficult problem. Therefore, an appropriate and effective numerical tool to develop an air cushion orthosis is required. The purpose of the present study was to develop an air seat cushion orthosis having optimized air cells for evenly distributed interface pressure between the buttock and cushion surface. For the purpose, an advanced finite element (FE) model for the design of air cushion was developed. Since the interface pressure and shear force behavior, as well as stress analyses were primary concern, a FE air cell model was developed and verified by the experiments. Then, the interactions of two cells were checked. Also, the human part of the developed numerical model includes every material property and geometry related to buttock and femoral parts. For construction of dimension data of buttock and femoral parts, CT scans were performed. A commercial FE program was employed for the simulation representing the seating process on the orthosis. Then, sensitive analyses were performed with varying design parameters. A set of optimal design parameters was found satisfying the design criteria of the orthosis. The results were utilized to produce a prototype of the orthosis. Experimentally, the buttock interface pressure distributions from the optimized and previous ones were compared. The new seat orthosis showed a significantly improved interface pressure characteristics compared to the most popular one in the market. The new orthosis will be used for the development of the AI(artificial intelligent) controlled seat orthosis fur prevention of decubitus ulcer fur various plegic patients and the elderly.

  • PDF

탑승자 교통사고에서 경추손상 판단을 위한 중증도 요인 분석 (Parameter Analysis to Predict Cervical Spine Injury on Motor Vehicle Accidents)

  • 이희영;육현;공준석;강찬영;성실;이정훈;김호중;김상철;추연일;전혁진;박종찬;최지훈;이강현
    • 자동차안전학회지
    • /
    • 제10권3호
    • /
    • pp.20-26
    • /
    • 2018
  • It was a pilot study for developing an algorithm to determine the presence or absence of cervical spine injury by analyzing the severity factor of the patients in motor vehicle occupant accidents. From August 2012 to October 2016, we used the KIDAS database, called as Korean In-Depth Accident Study database, collected from three regional emergency centers. We analyzed the general characteristics with several factors. Moreover, cervical spine injury patients were divided into two groups: Group 1 for from Quebec Task Force (hereinafter 'QTF') grade 0 to 1, and group 2 for from QTF grade 2 to 4. The score was assigned according to the distribution ratio of cervical spine injured patients compared to the total injured patients, and the cut-off value was derived from the total score by summation of the assigned score of each factors. 987 patients (53.0%) had no cervical spine injuries and 874 patients (47.0%) had cervical spine injuries. QTF grade 2 was found in 171 patients (9.2%) with musculoskeletal pain, QTF grade 3 was found in 38 patients (2.0%) with spinal cord injuries, and QTF grade 4 was found in 119 patients (6.4%) with dislocation or fracture, respectively. We selected the statistically significant factors, which could be affected the cervical spine injury, like the collision direction, the seating position, the deformation extent, the vehicle type and the frontal airbag deployment. Total score, summation of the assigned each factors, 10 was presented as a cut-off value to determine the cervical spine injury. In this study, it was meaningful as a pilot study to develop algorithms by selecting limited influence factors and proposing cut-off value to determine cervical spine injury. However, since the number of data samples was too small, additional data collection and influencing factor analysis should be performed to develop a more delicate algorithm.

지르코니아 표면 처리와 시멘트 종류에 따른 치면과의 전단 결합 강도 비교 연구 (In Vitro Evaluation of Shear Bond Strengths of Zirconia Cerami with Various Types of Cement after Thermocycling on Bovine Dentin Surface)

  • 조수현;조인호;이종혁;남기영;김종배;황상희
    • 구강회복응용과학지
    • /
    • 제23권3호
    • /
    • pp.249-257
    • /
    • 2007
  • State of problem : The use of zirconium oxide all-ceramic material provides several advantages, including a high flexural strength(>1000MPa) and desirable optical properties, such as shading adaptation to the basic shades and a reduction in the layer thickness. Along with the strength of the materials, the cementation technique is also important to the clinical success of a restoration. Nevertheless, little information is available on the effect of different surface treatments on the bonding of zirconium high-crystalline ceramics and resin luting agents. Purpose : The aim of this study was to test the effects of surface treatments of zirconium on shear bond strengths between bovine teeth and a zirconia ceramic and evaluate differences among cements Material and methods : 54 sound bovine teeth extracted within a 1 months, were used. They were frozen in distilled water. These were rinsed by tap water to confirm that no granulation tissues have left. These were kept refrigerated at $4^{\circ}C$ until tested. Each tooth was placed horizontally at a plastic cylinder (diameter 20mm), and embedded in epoxy resin. Teeth were sectioned with diamond burs to expose dentin and grinded with #600 silicon carbide paper. To make sure there was no enamel left, each was observed under an optical microscope. 54 prefabricated zirconium oxide ceramic copings(Lava, 3M ESPE, USA) were assigned into 3 groups ; control, airborne-abraded with $110{\mu}m$ $Al_2O_3$ and scratched with diamond burs at 4 directions. They were cemented with a seating force of 10 ㎏ per tooth, using resin luting cement(Panavia $F^{(R)}$), resin cement(Superbond $C&B^{(R)}$), and resin modified GI cement(Rely X $Luting^{(R)}$). Those were thermocycled at $5^{\circ}C$ and $55^{\circ}C$ for 5000 cycles with a 30 second dwell time, and then shear bond strength was determined in a universal test machine(Model 4200, Instron Co., Canton, USA). The crosshead speed was 1 mm/min. The result was analyzed with one-way analysis of variance(ANOVA) and the Tukey test at a significance level of P<0.05. Results : Superbond $C&B^{(R)}$ at scratching with diamond burs showed the highest shear bond strength than others (p<.05). For Panavia $F^{(R)}$, groups of scratching and sandblasting showed significantly higher shear bond strength than control group(p<.05). For Rely X $Luting^{(R)}$, only between scratching & control group, significantly different shear bond strength was observed(p<.05). Conclusion : Within the limitation of this study, Superbond $C&B^{(R)}$ showed clinically acceptable shear bond between bovine teeth & zirconia ceramics regardless of surface treatments. For the surface treatment, scratching increased shear bond strength. Increase of shear bond strength by sandblasting with $110{\mu}m$ $Al_2O_3$ was not statistically different.