• Title/Summary/Keyword: Seat-cooling fan

Search Result 3, Processing Time 0.02 seconds

Numerical Analysis on the Thermal Flow by a Thermoelectric Module within the Cabin of a Commercial Vehicle (상용차 캐빈 내의 열전모듈에 의한 열유동 수치해석)

  • Kim, J.K.;Oh, S.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.47-54
    • /
    • 2012
  • The steady three-dimensional numerical analysis on the thermal flow using standard k-${\varepsilon}$ turbulence model was carried out to investigate the air cooling effect of a cooler on the cabin for a commercial vehicle. Here, the heat exchanging method of this cabin cooler uses the cooling effect of a thermoelectric module. In consequence, the air system resistance of a cooler within the cabin is about 12.1 Pa as a static pressure, and then the operating point of a virtual cross-flow fan considering in this study is formed in the comparatively low flowrate region. The discharging air temperature of a cooler is about $14{\sim}15^{\circ}C$. Moreover, the air cooling temperature difference obtained under the outdoor cabin temperature of $40^{\circ}C$ shows about $7{\sim}9^{\circ}C$ in a driver resting space and about $9{\sim}14^{\circ}C$ in the front of a driver's seat including the space of a driver's foot.

Development of high performance and low noise compact centrifugal fan for cooling automotive seats (자동차 시트 쿨링용 고성능·저소음 컴팩트 원심팬 개발)

  • Kim, Jaehyun;Ryu, Seo-Yoon;Cheong, Cheolung;Jang, Donghyeok;An, Mingi
    • The Journal of the Acoustical Society of Korea
    • /
    • v.37 no.6
    • /
    • pp.396-403
    • /
    • 2018
  • In this paper, a high-performance and low-noise centrifugal fan is developed for cooling automotive seats which provide a driver with pleasant driving environment. First, the flow characteristics of the existing fan unit was analyzed using a fan performance tester and CFD (Computational Fluid Dynamics) simulations. The analysis of the predicted flow field indicated vortex flow near the tip of fan hub and stagnation flow on the top of fan hub. Two design points are devised to reduce the vortex flow and the stagnation flow observed in the existing fan unit. First, the cut-off clearance which is the minimum distance between the fan blade and the fan housing is increased to reduce the vortex strength and, as a result, to reduce the overall sound pressure level. Second, the hub shape is more modified to eliminate the stagnation flow. The validity of proposed design is confirmed through the numerical analysis. Finally, a prototype is manufactured with a basis on the numerical analysis result and its improved flow and noise performances are confirmed through the P-Q curves measured by using the Fan Tester and the SPL (Sound Pressure Level) levels measured in the anechoic chamber.