• 제목/요약/키워드: Seat Vibration

검색결과 221건 처리시간 0.026초

발전소 6 인치 역지밸브 손상 원인 분석 (Investigation on the Degradation Mechanism of 6" Swing Check Valve for Nuclear Power Plant)

  • 이선기;이준신;김태룡
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 추계학술대회논문집
    • /
    • pp.138-144
    • /
    • 2000
  • 원자력발전소 분기관에 설치되어 있는 6" swing check valve 중 일부에서 seat 면이 다소 손상되어 O/H 기간중에 시트면 연마정비 또는 밸브 교체정비를 수행하였다. 본 논문에서는 실험적 및 이론적 연구를 통하여 밸브 시트면 손상 원인을 분석하였으며, 분석 결과 구조공진 및 음향공진의 복합적인 작용에 의한 밸브 chattering이 손상 원인임을 규명하였다.

  • PDF

트랙터 로터리 작업과 쟁기 작업의 승차 진동 특성 (Characteristics of Ride Vibrations in Rotary Tillage and Plowing Operations by Tractor)

  • 박영준;박서범;김경욱
    • Journal of Biosystems Engineering
    • /
    • 제29권3호
    • /
    • pp.207-216
    • /
    • 2004
  • This study was intended to investigate the characteristics of ride vibrations transmitted to tractor operator during rotary tillage and plowing operations. Seat accelerations of a 41 ps diesel tractor in rotary tillage and plowing were measured and evaluated as specified in the ISO 2631-1. Effects of working speed and tilling depth on ride vibration were investigated. The level of ride vibration was also evaluated in terms of health guidance caution zones. Some of the results of the study are as follows: 1. The level of ride vibration in plowing was about 4.3 times greater than in rotary tillage. 2. The effect of working speed in rotary tillage differs depending upon the tillage depth. The level of ride vibration was increased with the speed, but it decreased over a certain tillage depth. Fore and aft vibration was 2.2-2.7 times severer than horizontal and vertical vibrations. Dominant frequency band was 1-3.15 ㎐ in fore and aft, 1-3.15㎐ and 16-25㎐ in horizontal, and 16-25㎐ in vertical directions. 3. Plowing reduced the ride vibration by 42.8-50.2%. But its positive effect decreased as the plowing speed increased. In plowing operation, ride vibration was similar degrees in fore and aft, horizontal and vertical directions. The dominant frequency band in plowing operation was 1-2.5㎐ in fore and aft, 1-2.5㎐ in horizontal, and 1-8㎐ in vertical directions. 4. On a basis of daily work hours of 4, total level of ride vibrations in plowing operation is likely to be harmful to operator's health.

차량용 터빈 하우징의 내구시험에 의한 균열 발생 및 진행에 대한 연구 (Study on the Crack Occurrence and Progress by Durability Test for Vehicular Turbine Housing)

  • 신상윤;이도훈;원순재;김동혁;예병준
    • 한국주조공학회지
    • /
    • 제38권2호
    • /
    • pp.48-54
    • /
    • 2018
  • To improve the durability of the turbocharger, it is important to suppress cracking of the turbine housing; therefore, we investigated the initiation and growth of these cracks. First, we initiated a crack in the turbine housing using endurance experiments. After the endurance test, cracks mainly occurred in the valve seat, the nozzle area, and the scroll part of the turbine housing. The results of a fracture analysis of the cracks showed that cracks in the valve seat were initiated by fatigue fracture. This seems to be caused by the accumulation of mechanical and thermal stresses due to vibration of the turbine wheel and high-temperature exhaust gas. Also, cracks in nozzle and scroll area were initiated by intergranular corrosion due to the exhaust gas. Thus, although there are differences in the cause of initiation according to the site, a concentric waveform was observed in all fracture planes. This phenomenon indicates that cracks gradually grow due to repeated stress changes, and the main causes are the temperature difference of the exhaust gas and the vibration caused by the turbine shaft.

Acquisition of Grass Harvesting Characteristics Information and Improvement of the Accuracy of Topographical Surveys for the GIS by Sensor Fusion (I) - Analysis of Grass Harvesting Characteristics by Sensor Fusion -

  • Choi, Jong-Min;Kim, Woong;Kang, Tae-Hwan
    • Journal of Biosystems Engineering
    • /
    • 제40권1호
    • /
    • pp.28-34
    • /
    • 2015
  • Purpose: This study aimed to install an RTK-GPS (Real Time Kinematic-Global Positioning System) and IMU (Inertial Measurement Unit) on a tractor used in a farm to measure positions, pasture topography, posture angles, and vibration accelerations, translate the information into maps using the GIS, analyze the characteristics of grass harvesting work, and establish new technologies and construction standards for pasture infrastructure improvement based on the analyzed data. Method: Tractor's roll, pitch, and yaw angles and vibration accelerations along the three axes during grass harvesting were measured and a GIS map prepared from the data. A VRS/RTK-GPS (MS750, Trimble, USA) tractor position measuring system and an IMU (JCS-7401A, JAE, JAPAN) tractor vibration acceleration measuring systems were mounted on top of a tractor and below the operator's seat to obtain acceleration in the direction of progression, transverse acceleration, and vertical acceleration at 10Hz. In addition, information on regions with bad workability was obtained from an operator performing grass harvesting and compared with information on changes in tractor posture angles and vibration acceleration. Results: Roll and pitch angles based on the y-axis, the direction of forward movements of tractor coordinate systems, changed by at least $9-13^{\circ}$ and $8-11^{\circ}$ respectively, leading to changes in working postures in the central and northern parts of the pasture that were designated as regions with bad workability during grass harvesting. These changes were larger than those in other regions. The synthesized vectors of the vibration accelerations along the y-axis, the x-axis (transverse direction), and the z-axis (vertical direction) were higher in the central and northwestern parts of the pasture at 3.0-4.5 m/s2 compared with other regions. Conclusions: The GIS map developed using information on posture angles and vibration accelerations by position in the pasture is considered sufficiently utilizable as data for selection of construction locations for pasture infrastructure improvement.

실물실험을 통한 PC-Slab합성 판형교의 성능비교연구 (A Study on the Comparison of Performance of PC-Slab Composite Plate Girder from the Actual Sized Experiment)

  • 민경주;이성욱;김영국;우용근
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2010년도 춘계학술대회 논문집
    • /
    • pp.1300-1309
    • /
    • 2010
  • In the railway bridges, steel plate girder types are preferred due the high stability. Nevertheless, it has been pointed out that this type of bridge has problems such as, structural damages in the rail and girder seat, noise problem due to impact at the rail joint and excessive vibration. This vibration and/or deflection are mainly because insufficient stiffness of steel plate type of bridge. To resolve these problems, PC-Slab composite plate girder type which has simple process and economic cost, is proposed in this study. The static and dynamic experiment is performed by using the production of actual sized PC-Slab and abandoned steel plate girder. The object of this experiment is to verify the fact that girder stiffness increase and structural safety. The result of the experiment is used to analyze the effect of performance improvement of PC composite plate girder type. Using this method, economic rail maintainers, girder stiffness increase, and also speed/ride improvement even for existing rail could be expected by dynamic performance improvement. Additionally noise due to impact, deflection and vibration caused from long rails can be reduced.

  • PDF

설계변수의 산포를 고려한 차량 승차감의 강건최적설계 (Robust Design Optimization of the Vehicle Ride Comfort Considering Variation of the Design Parameters)

  • 송필곤;;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제18권12호
    • /
    • pp.1217-1223
    • /
    • 2008
  • Vehicle vibration mostly originates from the road excitation and causes discomfort, fatigue and even injury to a driver. Vehicle ride comfort is one of the most important performance indices to achieve a high-quality vehicle design. Since design parameter variations inevitably result in the vehicle ride comfort variance, the variance characteristics should be analyzed in the early design stage of the vehicle. The vehicle ride comfort is often defined by an index which employs a weighted RMS value of the acceleration PSD of a seat position. The design solution is obtained through two steps in this study. An optimization problem to obtain a minimum ride comfort index is solved first. Then another optimization problem to obtain minimum variance of the ride comfort index is solved. For the optimization problems, the equations of motion and the sensitivity equations are derived basing on a 5-DOF vehicle model. The numerical results show that an optimal solution for the minimum ride comfort is not necessarily same as that of the minimum variance of the ride comfort.

수송 트레일러의 충격흡수장치 개발(II) - 동력경운기 연결 히치 - (Development of Vibration Absorption Device for the Transportation-Trailer System(II) - Connecting Hitch for Power Tiller-Trailer -)

  • 홍종호;이홍주;이성범;박원엽;김성엽
    • Journal of Biosystems Engineering
    • /
    • 제30권3호
    • /
    • pp.147-154
    • /
    • 2005
  • The improved hitch device, which connecting the trailer to power tiller, was developed. This device, composed with spring and rubber, could reduce the vibration and shock levels during driven on off-road. The vertical vibration accelerations for the improved hitch device were measured at 6 positions, i.e. engine, hitch, seat, and three points in trailer (front, middle, and rear) for not driving but at low engine speed of 500 rpm, and compared with the existing hitch device. The results of this study could be summarized as follows; The average vibration acceleration up to 120 Hz was $0.4m/s^2$ at engine part, but it was 0.08 and $0.05m/s^2$ at trailer for existing and improved hitch device, respectively. About $38\%$ of average acceleration level could be absorbed for the improved hitch device compared with existing hitch device. The average vibration acceleration up to 40 Hz was reduced to 0.12 and $0.06m/s^2$ at trailer for existing and improved hitch device respectively, showing the reduction effect of $50\%$. The maximum acceleration occurred at up to 20 Hz of low frequency was much higher than total acceleration occurred at up to 120 Hz, which means that much loss or damage could be occurred during transporting of agricultural products on off-road. The portions of average acceleration occurred at up to 20 Hz of low frequency were $27\%\;and\;21\%$ for the existing and improved hitch device, respectively.

수송 트레일러의 충격흡수장치 개발(III) -평판 스프링 현가장치- (Development of Vibration Absorption Device for the Transportation-Trailer System (III) - Leaf Spring Suspension Device -)

  • 홍종호;박원엽
    • Journal of Biosystems Engineering
    • /
    • 제33권4호
    • /
    • pp.224-229
    • /
    • 2008
  • This study was aimed to minimize the impact force and vibration transmitted to the transporting materials from the trailer and wheel shaft by installing the leaf spring suspension device at the space between the wheel shaft and frame of power tiller trailer. The developed trailer equipped with leaf spring suspension device was compared to the existing trailer without suspension device, in order to identify the vibration absorption effect of the leaf spring. The results of this study could be summarized as follows; (1) The length and the maximum bending amount of the leaf spring were designed as 1,000 mm and 42 mm, respectively, considering the possible space for installing at below the trailer. When 4 leaf springs were installed on both wheel shafts, the allowable maximum load was identified as 9,418 N. (2) The average vibration accelerations for the frequency less than 20 Hz, where the severe transporting loss could be represented, were $0.017\;m/s^2$ and $0.133\;m/s^2$ for the developed and the existing trailer, respectively, showing the vibration absorption effect of about 87%. And the average vibration accelerations on the driver's seat for the frequency less than 20 Hz were $0.01\;m/s^2$ and $0.20\;m/s^2$ for the developed and the existing trailer, respectively, which showed the similar vibration absorption effect. (3) The change of the average vibration accelerations for the frequency from 20 Hz to 80 Hz showed the similar tendency with the result for the frequency less than 20 Hz, but the effect for developed trailer was reduced slightly. And the effect of vibration absorption for the above 80 Hz was reduced highly. However, by installing the leaf spring suspension device at the trailer, the low frequency below 40 Hz, which could affect on transporting loss severely, could be reduced highly. (4) The maximum vibration acceleration for the frequency less than 20 Hz were $0.027\;m/s^2$ and $1.267\;m/s^2$ for the developed and the existing trailer, respectively. And the change of maximum acceleration between 20 Hz and 120 Hz was showed similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

승차감 평가를 위한 주파수 보정곡선의 분석 (Analysis of the Frequency Weighting Curve for the Evaluation of Ride Comfort)

  • 김영국;박찬경;김석원;김기환;백진성
    • 한국철도학회논문집
    • /
    • 제13권6호
    • /
    • pp.552-558
    • /
    • 2010
  • 철도차량의 승차감은 진동뿐만 아니라 소음, 냄새, 온도 등 많은 요인들에 의해 영향을 받지만 승객에 크게 영향을 주는 진동으로 평가하는 것이 일반적이다. 승차감은 승객이 느끼는 감정이므로 물리적인 가속도의 크기뿐만 아니라 진동에 대한 인간의 감응도(느낌)도 고려하여야 한다. 이러한 진동에 대한 인간의 감응도를 나타낸 것이 주파수 보정곡선이다. 따라서, 철도 차량의 승차감 평가에는 인간의 감응도가 고려된 주파수 보정 가속도를 필요로 한다. 철도차량의 승차감 평가는 많은 규격에 규정되어 있으나, 각각의 규격에 따라 서로 다른 주파수 보정 곡선을 제시하고 있다. 본 논문에서는 국제철도협회, 유럽표준위원회, 국제표준위원회에서 규정한 주파수 보정곡선에 대해 분석하고 그 차이점을 고찰한다. 또한, 주파수 보정곡선의 차이가 고속철도 차량의 승차감 평가에 미치는 영향을 실제의 시운전 시험을 통해 분석하고자 한다.

자전거 프레임의 형상과 방향에 따른 구조적 내구성 해석 (Structural Durability Analysis Related to Shape and Direction of Bicycle Frames)

  • 조재웅;한문식
    • 한국생산제조학회지
    • /
    • 제22권6호
    • /
    • pp.969-975
    • /
    • 2013
  • While accelerating, bicycle frames are subject to torsion forces and deformation. In this study, bicycle frame durability was evaluated by using structural, fatigue, and vibration experiments. Three types of models were designed by changing the frame configurations according to the shape and direction of a bicycle frame design. Because maximum equivalent stress was greatest at the saddle and at connected parts in Models 1, 2, and 3, these frame sections were most vulnerable to failure. Model 2 was the least safe, due to the increased total deformation and equivalent stresses in the top tube horizontal to the ground. Based on vibration and fatigue analysis results, Model 2 was also determined to be the least safe frame, because the head tube was placed slightly higher above the seat tube and inclined to $10^{\circ}$. These study results can be utilized in the design of bicycle frames by investigating prevention and durability against damage.