We were interested in the long-term temporal and spatial variability trends of water quality. Trend tests such as the Seasonal and Regional Kendall tests and LOWESS (LOcally WEighted Scatter plot Smoother) have been recommended as outstanding tools for trend detection. In this study, we conducted four types of nonparametric trend tests (Seasonal and Regional Kendall tests, LOWESS, and flow-adjusted Seasonal Kendall). We aimed to identify water quality trends using the monthly data for five variables (BOD, COD, TN, TP, and flow) collected from 24 sites in the Nakdong River from August 2004 to December 2013. According to the Regional Kendall test, BOD, COD, and TN increased but TP decreased trend. The Seasonal Kendall test showed that BOD, TN, and TP remained constant at 62.5-83.3% of the sites. COD remained constant at 58.3% of the sites. LOWESS showed that TP gradually increased between 2007 and 2008, then decreased slowly at the Gumi, Geumhogang6, Daeam-1 and Milyanggang3 sites. BOD increased slightly between 2008 and 2009, and then decreased slowly at the Namgang4-1 site. Lastly, a flow-adjusted Seasonal Kendall test was conducted. There were different results between Seasonal Kendall and flow-adjusted Seasonal Kendall tests at 11 of the 24 sites. According to the results from six of the eleven sites, BOD increased at one site, showed no trends at three sited, and decreased at two sites. Each of COD, TN increased at two, one site. but TP decreased at two sites.
This study introduced a Bayesian based frequency analysis in which the statistical trend seasonal analysis for hydrologic extreme series is incorporated. The proposed model employed Gumbel and GEV extreme distribution to characterize extreme events and a fully coupled bayesian frequency model was finally utilized to estimate design rainfalls in Seoul. Posterior distributions of the model parameters in both trend and seasonal analysis were updated through Markov Chain Monte Carlo Simulation mainly utilizing Gibbs sampler. This study proposed a way to make use of nonstationary frequency model for dynamic risk analysis, and showed an increase of hydrologic risk with time varying probability density functions. In addition, full annual cycle of the design rainfall through seasonal model could be applied to annual control such as dam operation, flood control, irrigation water management, and so on. The proposed study showed advantage in assessing statistical significance of parameters associated with trend analysis through statistical inference utilizing derived posterior distributions.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.513-523
/
2000
The X-12-ARIMA program was utilized on the analysis of the time series trend on 76 Korean industrial activities data in order to ensure that the trading day effect adjustment as well as the seasonal effect adjustment is needed to extract the fundamental trend-cycle factors from various economic time series data. The trading day effect is strongly correlated with the activity of production and shipping but not with the activity of inventory. Furthermore, the industrial activities were classified with respect to the sensitivity on the tranding day effect.
In this study, we analyzed the trends of water quality along the main stream in Nakdong river basin using the recent data and seasonal Mann-Kendall test. Monthly averaged values of DO, BOD, SS, COD, TN, and TP from 1989 to 2014 for 14 stations (including 2 TMDLs stations) were used in the study. The trend analysis results showed that BOD and TP at most stations has decreasing temporal trend except a few stations while COD and SS showed increasing trend at most stations. Temporal trends in TN at 8 stations were found to be statistically significant and 5 of them showed increasing temporal trend. Temporally averaged BOD, COD, TN and TP were generally increasing as going downstream and the worst water quality were found at Goryeong and Hyunpung station. Overall, water quality of Nakdong river especially in COD, SS, and TN getting worse in time at most stations and as going downstream.
이 연구에서는 서울의 1941~1970년(가 기간)과 1971~2000년(나 기간)의 일 평년 기온에 조화분석을 적용하여 계절 추이를 산출, 이의 변화 양상을 살피고, 계절 추이와 변화에 영향을 미치는 요인을 조사하였다. 그 결과 겨울철의 가장 낮은 기온이 가 기간에는 1월초 중순에 나타났으나 나 기간에는 1월 하순~2월 초순에 나타나 계절 추이가 변화되었음을 나타냈다. 이러한 변화는 12월 27일~1월 20일(전기)의 기온이 보다 많이 상승한 반면 1월 21일~2월 9일(후기)의 기온이 보다 적게 상승하였기 때문에 나타났다. 가 기간의 일 평년값에 대한 전기와 후기의 기온 펀치는 1970년 이전에는 큰 차이가 없었으나 1971년 이후에 차이가 컸다. 전기의 경우 시베리아 고기압이 근래에 뚜렷하게 약화되면서 우리나라 부근의 북풍이 약화되어 서울의 기온이 많이 상승하였다. 반면 후기의 경우 시베리아 고기압이 근래에 약화되었으나 알류샨 저기압이 발달하여 우리나라 부근의 북풍은 크게 약화되지 않아 서울 기온이 많이 상승하지 않았다.
본 연구에서는 시계열 예측을 위해 선형 모형과 비선형 모형의 하이브리드 모형 및 순수 모형의 성과를 비교 평가하였다. 이를 위해 5가지 서로 다른 패턴을 가지는 데이터를 생성하여 시뮬레이션을 진행하였다. 본 연구에서 고려한 선형 모형은 AR(autoregressive model)과 SARIMA(seasonal autoregressive integrated moving average model)이고 비선형 모형은 인공신경망(artificial neural networks model)과 GAM(generalized additive model)이다. 특히, GAM은 여러 장점에도 불구하고 시계열 예측을 위한 비선형 모형으로 기존 연구들에서는 거의 쓰이지 않았던 모형이다. 시뮬레이션 결과, seasonality를 가지는 시계열에 대해서는 AR 및 AR-AR 모형이, trend를 가지는 시계열에 대해서는 SARIMA 및 SARIMA와 다른 모형의 하이브리드 모형이 다른 모형에 비해 높은 성과를 보였다. 한편, 인공신경망과 GAM을 비교하면, 트렌드와 계절성이 더해진 시계열에 대해 SARIMA와 GAM의 하이브리드 모형이 거의 모든 노이즈(noise) 수준에 대해 높은 성과를 보인 반면, 노이즈 수준이 미미한 경우에 한해 SARIMA와 인공신경망의 하이브리드 모형이 높은 성과를 보였다.
Spatial and temporal analyses of water qualities were performed for 11 monitoring stations located in Mangyung watershed in order to analyze the trends of monthly water quality data of Biochemical Oxygen Demand (BOD), Total Nitrogen (TN) and Total Phosphorus (TP) measured from 1995 to 2004. The long-term trends were analyzed utilizing Seasonal Mann-Kendall test, LOWESS and three-dimensional graphs were constructed with respect to distance and time. The graph can visualize spatial and temporal trend of the long-term water quality in a large river system. The results of trend analysis indicated that water quality of BOD and TN showed the downward trend. This quantitive and quantitative analysis is the useful tool to analyze and display the long-term trend of water quality in a large river system.
본 연구는 시계열 데이터를 효과적으로 예측하기 위해 데이터를 Seasonal-Trend Decomposition on Loess 을 통해 추세, 계절성, 잔차 성분으로 분해한 후 추세 성분에는 ARIMA, 계절성 성분에는 Fourier Series Regression, 잔차 성분에는 XGBoost를 적용하는 하이브리드 예측 모델을 제안하였다. 또한, ARIMA, XGBoost, LSTM, EMD-ARIMA, CEEMDAN-LSTM 모델을 포함한 성능 비교 실험을 수행하여 각 모델의 예측 성능을 평가하였다. 실험 결과, 제안된 하이브리드 모델은 MAPE, MAAPE, RMSE 지표에서 각각 3.8%, 3.5%, 0.35로 가장 좋은 평가 지표 값을 보이며 기존의 단일 모델보다 우수한 성능을 보였다.
In this study, changes in daily temperature range were investigated using daily maximum and minimum temperatures of Busan and Daegu for last 81 years (1934-2014), and also characteristics of daily temperature range and seasonal fluctuations by urbanization were examined. First, elapsing changes showed a lower decreasing trend in Busan ($0.32^{\circ}C$) than Daegu ($1.28^{\circ}C$) for last 81 years. Daily temperature range showed the highest rise in winter in both Busan and Daegu. Second, daily temperature range due to urbanization showed that Busan had a pronounced decreasing trend before urbanization meanwhile Daegu showed the same trend after urbanization. On seasonal changes, the results of Busan showed a decreasing trend in summer before urbanization, and in autumn after urbanization. For Daegu, the results showed a decreasing trend in spring before urbanization, and in winter after urbanization. Seasonal fluctuations of Busan showed little difference in the pre and post-urbanization, except in winter and summer. There was large difference in daily temperature range in winter after urbanization, and in summer before the urbanization. The results in Daegu showed that there was decreasing trend of daily temperature range in all seasons after urbanization.
Pan evaporation (Epan) is an important indicator of water and energy balance. Despite global warming, decreasing annual Epan has been reported across different continents over last decades, which is claimed as pan evaporation paradox. However, such trend is not necessarily found in seasonal data because the level of contributions on Epan vary among meteorological components. This study investigates long-term trend in seasonal pan evaporation from 1908 to 2016 across South Korea. Meteorological variables including air temperature (Tair), wind speed (U), vapor pressure deficit (VPD), and solar radiation (Rs) are selected to quantify the effects of individual contributing factor to Epan. We found overall decreasing trend in Epan, which agrees with earlier studies. However, mixed tendencies between seasons due to variation of dominant factor contributing Epan were found. We also evaluated the reference evapotranspiration based on Penman-Monteith method and compared this with Epan to better understand the physics behind the evaporation paradox.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.