• Title/Summary/Keyword: Seasonal flux

Search Result 156, Processing Time 0.021 seconds

CO2 EXCHANGE COEFFICIENT IN THE WORLD OCEAN USING SATELLITE DATA

  • Osawa, Takahiro;Masatoshi, Akiyama;Suwa, Jun;Sugimori, Yasuhiro;Chen, Ru
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.49-57
    • /
    • 1998
  • CO2 transfer velocity is one of the key parameters for CO2 flux estimation at air - sea interface. However, current studies show that significant inconsistency still exists in its estimation when using different models and remotely sensed data sets, which acts as one of the main uncertainties involved in the computation of CO2 exchange coefficient between air - sea interface. In this study, wind data collected from SSM/I and scatterometer onboard ERS-1, in conjunction with operational NOAA/AVHRR, are applied to different models for calculating CO2 exchange coefficient in the world ocean. Their interrelationship and discrepancies inherent with different models and satellite data are analyzed. Finally, the seasonal and inter-annual variation of CO2 exchanges coefficient for different ocean basins are presented and discussed.

  • PDF

Seasonal Variation and Transport Pattern of Suspended Matters in semiclosed Muan Bay, Southwestern Coast of Korea (반폐쇄된 무안만에서 부유물질의 계절적 변동 및 운반양상)

  • Ryu, Sang-Ock;Kim, Joo-Young;You, Hoan-Su
    • Journal of the Korean earth science society
    • /
    • v.21 no.2
    • /
    • pp.128-136
    • /
    • 2000
  • To understand the variation and transport pattern of suspended matters, salinity, tidal current and suspended matters in semiclosed Muan Bay have been monitored during winter and summer. The suspended matters show considerably seasonal variations with low concentration and homogeneity in the water column during winter season, but with high concentration and layering during summer season. Particularly, during summer season, the freshwater and the suspended matters influxed by the gate operation of the Youngsan River sea-dike are transported northward in accordance with the would flow into the inner-bay by relaxed flood currents after the construction of sea-dike and sea-walls in the Mokpo coastal zone. But, in the south bay-mouth, those matters outflow through the bay-mouth, resulting from tidal ebb dominance and asymmetry in the west bay-mouth. The residual suspended matter flux is much higher in the south bay-mouth(-0.0955kg/m ${\cdot}$ sec) than that of west bay-mouth(0.0078kg1m ${\cdot}$ sec). Accordingly, The Muan Bay is interpreted as erosion-dominated environments, and the erosion somewhat progresses in the intertidal flat of the bay.

  • PDF

Seasonal Variations of the Heat Flux in Muddy Intertidal Sediments near the Jebu Island during the Ebb Tides in the West Coast of Korea (서해 제부도 해역의 간조시 갯벌 퇴적층내 지온 및 열수지의 계절변화)

  • Na, Jung-Yul;Yu, Sung-Hyup;Seo, Jang-Won
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Vertical temperature distributions in muddy intertidal sediments near the Jebu Island on the west coast of Korea were obtained during the period of ebb tide which occurred in day time. The observations of mud temperature were made with thermistor embedded probe at 2cm interval for 18cm-layer of sediment for five different months of the year. Temporal changes in the vertical profile of the sediment temperature are strongly depend on the air temperature, the previous time of flood tide and the time of ebb tide. Heat exchanges in the surface layer (0-2 cm) in terms of magnitude and direction are greater than and opposite to those in the deeper sediment layer (8-12 cm), respectively and do not show any significant seasonal variations. In general, the surface layer gains heat while the deeper layer loses the heat. By using the 1-D diffusion equation temporal vertical profiles of the sediment temperature were obtained and were compared with the observed ones. The results show that in the sediment layer below 4 cm-depth the heat transport is predominantly by molecular diffusion. The average magnitude of heat flux into the sediment layer (0-18 cm) during the ebb tide when the mudflats were exposed in the middle of the day were between 4.1 and $28.9\;W/m^2$.

  • PDF

Seasonal Variation of CO2 Exchange During the Barley Growing Season at a Rice-barley Double Cropping Paddy Field in Gimje, Korea (김제 벼-보리 이모작 논에서 보리재배 기간의 CO2 교환량의 계절적 변화)

  • Min, Sung-Hyun;Shim, Kyo-Moon;Kim, Yong-Seok;Hwang, Hae;Jung, Myung-Pyo;Choi, In-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.2
    • /
    • pp.137-145
    • /
    • 2014
  • Rice-barley double cropping system is typical in southwestern part of South Korea. However, the information of carbon dioxide ($CO_2$) exchange for barley growing season has still limited in comparison with rice. Using the eddy covariance (EC) technique, seasonal variation of $CO_2$ exchange was analyzed for the barley growing season at a rice-barley double cropping field in Gimje, Korea. The effects of environmental factors and biomass on the $CO_2$ flux also were investigated. Quality control and gap-filling of flux data were conducted before this analysis and investigation. The results indicated that $CO_2$ uptake increased rapidly at tillering stage and maximum net ecosystem exchange of $CO_2$ (NEE) occurred at the early of May, 2012 ($-11.2gCm^{-2}d^{-1}$), when the heading of barley occurred. NEE, gross primary production (GPP), and ecosystem respiration (Re) during the barley growing season were -348.0, 663.3, and $315.2gCm^{-2}$, respectively. In this study, an attempt has been made to measure NEE, GPP, and Re with the help of the EC system for the barley growing season for the first time in Korea, focusing on $CO_2$ exchange between the biosphere and the atmosphere.

Application of Common Land Model in the Nakdong River Basin, Korea for Simulation of Runoff and Land Surface Temperature (Common Land Model의 국내 적용성 평가를 위한 유량 및 지면온도 모의)

  • Lee, Keon Haeng;Choi, Hyun Il;Kwon, Hyun Han;Kim, Sangdan;Chung, Eu Gene;Kim, Kyunghyun
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.2
    • /
    • pp.247-258
    • /
    • 2013
  • A grid-based configuration of Land Surface Models (LSMs) coupled with a climate model can be advantageous in impact assessment of climate change for a large scale area. We assessed the applicability of Common Land Model (CoLM) to runoff and land surface temperature (LST) simulations at the domain that encompasses the Nakdong river basin. To establish a high resolution model configuration of a $1km{\times}1km$ grid size, both surface boundary condition and atmospheric inputs from the observed weather data in 2009 were adjusted to the same resolution. The Leaf Area Index (LAI) was collected from MODerate esolution Imaging Spectroradiometer (MODIS) and the downward short wave flux was produced by a nonstationary multi-site weather state model. Compared with the observed runoffs at the stations on Nakdong river, simulated runoffs properly responded to rainfall. The spatial features and the seasonal variations of the domain fairly well were captured in the simulated LSTs as well. The monthly and seasonal trend of LST were described well compared to the observations, however, the monthly averaged simulated LST exceeded the observed up to $2^{\circ}C$ at the 24 stations. From the results of our study, it is shown that high resolution LSMs can be used to evaluate not only quantity but also quality of water resources as it can capture the geographical features of the area of interest and its rainfall-runoff response.

Suppression of Methane Emission from Rice Paddy Soils with Fly ash Amendment

  • Ali, Muhammad Aslam;Oh, Ju-Hwan;Kim, Pil-Joo
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.2
    • /
    • pp.141-148
    • /
    • 2007
  • Fly ash, a by-product of the coal-burning industry, and a potential source of ferro-alumino-silicate minerals, which contains high amount of ferric oxide and manganese oxide (electron acceptors), was selected as soil amendment for reducing methane $(CH_4)$ emission during rice cultivation. The fly ash was applied into potted soils at the rate of 0, 2, 10, and 20 Mg $ha^{-1}$ before rice transplanting. $CH_4$ flux from the potted soil with rice plants was measured along with soil Eh and floodwater pH during the cropping season. $CH_4$ emission rates measured by closed chamber method decreased gradually with the increasing levels of fly ash applied but rice yield significantly increased up to 10 Mg $ha^{-1}$ application level of the amendment. At this amendment level, total seasonal $CH_4$ emission was decreased by 20% along with 17% rice grain yield increment over the control. The decrease in total $CH_4$ emission may be attributed due to suppression of $CH_4$ production by the high content of active and free iron, and manganese oxides, which acted as oxidizing agents as well as electron acceptors. In conclusion fly ash could be considered as a feasible soil amendment for reducing total seasonal $CH_4$ emissions as well as maintaining higher grain yield potential under optimum soil nutrients balance condition.

Evidences of in Situ Remediation from Long Term Monitoring Data at a TCE-contaminated Site, Wonju, Korea

  • Lee, Seong-Sun;Kim, Hun-Mi;Lee, Seung Hyun;Yang, Jae-Ha;Koh, Youn Eun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.6
    • /
    • pp.8-17
    • /
    • 2013
  • The contamination of chlorinated ethenes at an industrial complex, Wonju, Korea, was examined based on sixteen rounds of groundwater quality data collected from 2009 to 2013. Remediation technologies such as soil vapor extraction, soil flushing, biostimulation, and pumping-and-treatment have been applied to eliminate the contaminant sources of trichloroethylene (TCE) and to prevent the migration of TCE plume from remediation target zones. At each remediation target zone, temporal monitoring data before and after the application of remediation techniques showed that the aqueous concentrations of TCE plume present at and around the main source areas decreased significantly as a result of remediation technologies. However, the TCE concentration of the plumes at the downstream area remained unchanged in response to the remediation action, but it showed a great fluctuation according to seasonal recharge variation during the monitoring period. Therefore, variations in the contaminant flux across three transects were analyzed. Prior to the remediation action, the concentration and mass discharges of TCE at the transects were affected by seasonal recharge variation and residual DNAPLs sources. After the remediation, the effect of remediation took place clearly at the transects. By tracing a time-series of plume evolution, a greater variation in the TCE concentrations was detected at the plumes near the source zones compared to the relatively stable plumes in the downstream. The difference in the temporal profiles of TCE concentrations between the plumes in the source zone and those in the downstream could have resulted from remedial actions taken at the source zones. This study demonstrates that long term monitoring data are useful in assessing the effectiveness of remediation practices.

Spatial Characteristics of Gwangneung Forest Site Based on High Resolution Satellite Images and DEM (고해상도 위성영상과 수치고도모형에 근거한 광릉 산림 관측지의 공간적 특성)

  • Moon Sang-Ki;Park Seung-Hwan;Hong Jinkyu;Kim Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.1
    • /
    • pp.115-123
    • /
    • 2005
  • Quantitative understanding of spatial characteristics of the study site is a prerequisite to investigate water and carbon cycles in agricultural and forest ecosystems, particularly with complex, heterogeneous landscapes. The spatial characteristics of variables related with topography, vegetation and soil in Gwangneung forest watershed are quantified in this study. To characterize topography, information on elevation, slope and aspect extracted from DEM is analyzed. For vegetation and soil, a land-cover map classified from LANDSAT TM images is used. Four satellite images are selected to represent different seasons (30 June 1999, 4 September 2000, 23 September 2001 and 14 February 2002). As a flux index for CO₂ and water vapor, normalized difference vegetation index (NDVI) is calculated from satellite images for three different grid sizes: MODIS grid (7km x 7km), intensive observation grid (3km x 3km), and unit grid (1km x 1km). Then, these data are analyzed to quantify the spatial scale of heterogeneity based on semivariogram analysis. As expected, the scale of heterogeneity decreases as the grid size decreases and are sensitive to seasonal changes in vegetation. For the two unit grids where the two 40 m flux towers are located, the spatial scale of heterogeneity ranges from 200 to 1,000m, which correspond well to the climatology of the computed tower flux footprint.

Deposition Process of Sulfate and Elemental Carbon in Japanese and Thai Forests

  • Sase, Hiroyuki;Matsuda, Kazuhide;Visaratana, Thiti;Garivait, Hathairatana;Yamashita, Naoyuki;Kietvuttinon, Bopit;Hongthong, Bundit;Luangjame, Jesada;Khummongkol, Pojanie;Shindo, Junko;Endo, Tomomi;Sato, Keiichi;Uchiyama, Shigeki;Miyazawa, Masamitsu;Nakata, Makoto;Lenggoro, I. Wuled
    • Asian Journal of Atmospheric Environment
    • /
    • v.6 no.4
    • /
    • pp.246-258
    • /
    • 2012
  • Particulate matter deposited on leaf surfaces may cause erosion/abrasion of epicuticular wax and the malfunction of stomata. However, the deposition processes of particulate matter, such as elemental carbon (EC), has not been studied sufficiently in Asian forest ecosystems. Deposition processes for particulate ${SO_4}^{2-}$ and EC were studied in a Japanese cedar forest in Kajikawa, Niigata Prefecture, Japan, and in a dry evergreen forest and a dry deciduous forest in Sakaerat, Nakhon Ratchasima province, Thailand. The ${SO_4}^{2-}$ fluxes attributed to rainfall outside the forest canopy (RF), throughfall (TF), and stemflow (SF) showed distinct seasonalities at both sites, increasing from November to February at the Kajikawa site and in March/April at the Sakaerat site. Seasonal west/northwest winds in winter may transport sulfur compounds across the Sea of Japan to the Kajikawa site. At the Sakaerat site, pollutants suspended in the air or dry deposits from the dry season might have been washed away by the first precipitations of the wet season. The EC fluxes from RF and TF showed similar variations by season at the Kajikawa site, while the flux from TF was frequently lower than that from RF at the Sakaerat site. Particulate matter strongly adsorbed onto leaf surfaces is not washed away by rainfall and contributes to the EC flux. At the Kajikawa site, Japanese cedar leaf surfaces accumulated the highest levels of particulate matter and could not be neglected when calculating the total flux. When such leaf-surface particles were considered, the contribution of dry deposition to the total EC flux was estimated to be 67%, 77%, and 82% at the Kajikawa site, and at the evergreen and deciduous forests of the Sakaerat site, respectively. Leaf-surface particles must be included when evaluating the dry and total fluxes of particulate matter, in particular for water-insoluble constituents such as EC.