• Title/Summary/Keyword: Seasonal energy efficiency ratio

Search Result 14, Processing Time 0.022 seconds

An Evaluating of Daylighting Performance by Venetian Blind Shapes Type Change - Centre on Radiance Program (베네치안 블라인드 슬랫각도 형태변화에 따른 주광성능에 관한 연구 - Radiance Program 중심으로)

  • Lim, Tae Sub;Park, Jong Myung;Lim, Jung Hee;Kim, Byung Seon
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.59-66
    • /
    • 2013
  • Current Architectural Facade Designs have been trending to increased glass areas resulting in increasing impact on interior lighting and daylighting. In regards to indoor environmental quality, the increase in window space has a large impact on the daylighting received which ultimately impacts the liveability of a space. Especially when considering seasons, in the summer, excessive daylighting can result in glare as well as put an increased load in conditioning the air space further reducing energy efficiency. As a result, in order to improve the sustainability performance of a building, it is important to limit the natural lighting exposure to properly meet the needs and conditions of the building occupants. One of the most representative features to limit excessive sunlight exposure, is to incorporate operable blind systems. To this end, this research has been based on simulations performance through the Radiance Program. Radiance is capable of analyzing performance of daylight and impact of sunlight. Through analysis of different slat angles and blind shapes, impact and minimization of energy usage was evaluated. Furthermore, seasonal analysis was performed in order to understand the effects of seasonal climate factors. Ultimately this research provides an analysis of operable blinds optimization and effects of blind shape, control factors and angle of shading.

The Measurement of Seasonal Evapotranspiration above Corn Canopy Based on the Bowen ratio-Energy Balance Method (보우엔비(比)-에너지수지방법(收支方法)에 의한 옥수수군락(群落) 증발산(蒸發散)의 계절별(季節別) 관측(觀測))

  • Lee, Yang-Soo;Im, Jeong-Nam;Kang, Young-Hee
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.21 no.1
    • /
    • pp.15-19
    • /
    • 1988
  • Heat energy distribution forming net radiation above corn canopy was determined by means of the Bowen ratio-energy balance method. Total-global solar radiation above crop canopy during the growing season was $1,559MJm^{-2}$ and total latent heat flux density was $960MJm^{-2}$. The data showed that 61.6% of the global solar radiation was used for a heat source of evapotranspiration (ETa) above corn canopy. Mean daily ETa ranged from 2.7 to 5.6mm. Total ETa, total drymatter, and water use efficiency were 394mm, $2,214gm^{-2}$, and $5.6gm^{-2}mm^{-1}$, respectivively.

  • PDF

Heat Balance Characteristics and Water Use Efficiency of Soybean Community (콩군낙(群落)의 열수지특성(熱收支特性)과 건물(乾物)로의 물이용효율(利用效率))

  • Lee, Yang-Soo;Im, Jeong-Nam
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.23 no.2
    • /
    • pp.94-99
    • /
    • 1990
  • A field experiment was conducted to study seasonal evapotranspiration above soybean canopy and its relationship with dry matter production by the Bowen ratio-energy balance method. The soybean "Paldalkong" was sown with the space of $47{\times}10cm$ at Suwon on May 27, 1988. The daily net radiation ranged from 59 to 76 percents of the total shortwave radiation under cloudless conditions, which was lower than cloud overcast condition with recorded 63 to 83 percents. The latent heat flux under overcast condition was sometimes larger than the sum of net radiation, implying transportation of energy by advection of ambient air. The linear relationship was obtained between daily or daytime net radiation and evapotranspiration. The evapotranspiration calculated by Bowen ratio-energy balance method was about 150 percent of class A pan evaporation during the growing season. The total solar radiation from June 20 to August 27 was $1043MJm^{-2}$. The 85 percent of the total shortwave radiation was used for evaporative heat. The dry matter production within the period was $836gm^{-2}$ and the water use efficiency was $2.31gDM\;kg^{-1}\;H_2O$.

  • PDF

Seasonal and Inter-annual Variability of Water Use Efficiency of an Abies holophylla Plantation in Korea National Arboretum (국립수목원의 전나무(Abies holophylla) 조림지의 물 이용 효율의 계절 및 경년 변동)

  • Thakuri, Bindu Malla;Kang, Minseok;Zhang, Yonghui;Chun, Junghwa;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.4
    • /
    • pp.366-377
    • /
    • 2016
  • Water use efficiency (WUE) is considered as an important ecological indicator which may provide information on the process-structure relationships associated with energy-matter-information flows in ecosystem. The WUE at ecosystem-level can be defined as the ratio of gross primary productivity (GPP) to evapotranspiration (ET). In this study, KoFlux's long-term (2007-2015) eddy covariance measurements of $CO_2$ and water vapor fluxes were used to examine the WUE of needle fir plantation in Korea National Arboretum. Our objective is to ascertain the seasonality and inter-annual variability in WUE of this needle fir plantation so that the results may be assimilated into the development of a holistic ecological indicator for resilience assessment. Our results show that the WUE of needle fir plantation is characterized by a concave seasonal pattern with a minimum ($1.8-3.3g\;C{\cdot}(kg\;H_2O)^{-1}$) in August and a maximum ($5.1-11.4g\;C{\cdot}(kg\;H_2O)^{-1}$) in February. During the growing season (April to October), WUE was on average $3.5{\pm}0.3g\;C\;(kg\;H_2O)^{-1}$. During the dormant seasons (November to March), WUE showed more variations with a mean of $7.4{\pm}1.0g\;C{\cdot}(kg\;H_2O)^{-1}$. These values are in the upper ranges of WUE reported in the literature for coniferous forests in temperate zone. Although the growing season was defined as the period from April to October, the actual length of the growing season (GSL) varied each year and its variation explained 62% of the inter-annual variability of the growing season WUE. This is the first study to quantify long-term changes in ecosystem-level WUE in Korea and the results can be used to test models, remote-sensing algorithms and resilience of forest ecosystem.