• Title/Summary/Keyword: Seasonal contribution

Search Result 139, Processing Time 0.03 seconds

The Change of Pollution Loads flowing into Mokpo Harbour Due to the Operation of Mokpo Municipal Sewage Treatment Plant (목포하수처리장 가동에 따른 목포항 유입 오염부하량의 변화)

  • 김광수
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.8 no.2
    • /
    • pp.39-44
    • /
    • 2002
  • In order to study the change of pollution loads flowing into Mokpo harbour after the operation of Mokpo Municipal Sewage Treatment Plant (MMSTP) and to evaluate the contribution of MMSTP operation to the improvement of marine water quality of Mokpo harbour, the pollution loads flowing into Mokpo harbour from land in dry weather were surveyed and estimated on the bases of the seasonal flow rates and the seasonal water qualities of streams and effluents located around Mokpo harbour from summer, 1997 to spring, 1998 before the operation of MMSTP, and the pollution loads of the inflow and the effluent of MMSTP were also surveyed and estimated from winter, 1998 to spring, 1999 after the operation of MMSTP. The treatment rates of MMSTP were shown to be about 49% in COD, 76% in TSS, 79% in VSS, 3% in T-N, 7% in DIP, 29% in T-P and -32% in DIN. The change rates of pollution loads flowing into the inner harbour of Mokpo due to the operation of MMSTP were shown to be about 56% In COD, 78% in TSS, 84% in VSS, 45% in DIN, 22% in T-N, 34% in T-P and -14% in DIP. The contribution rates of MMSTP operation to the reduction of total pollution loads flowing into the entire Mokpo harbour were found to be about 3% in COD, 3% in 755,5% in VSS,1% in DIP, 3% in T-P and -1% in DIN.

  • PDF

Comparative Analysis of Baseflow Separation using Conventional and Deep Learning Techniques

  • Yusuff, Kareem Kola;Shiksa, Bastola;Park, Kidoo;Jung, Younghun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.149-149
    • /
    • 2022
  • Accurate quantitative evaluation of baseflow contribution to streamflow is imperative to address seasonal drought vulnerability, flood occurrence and groundwater management concerns for efficient and sustainable water resources management in watersheds. Several baseflow separation algorithms using recursive filters, graphical method and tracer or chemical balance have been developed but resulting baseflow outputs always show wide variations, thereby making it hard to determine best separation technique. Therefore, the current global shift towards implementation of artificial intelligence (AI) in water resources is employed to compare the performance of deep learning models with conventional hydrograph separation techniques to quantify baseflow contribution to streamflow of Piney River watershed, Tennessee from 2001-2021. Streamflow values are obtained from the USGS station 03602500 and modeled to generate values of Baseflow Index (BI) using Web-based Hydrograph Analysis (WHAT) model. Annual and seasonal baseflow outputs from the traditional separation techniques are compared with results of Long Short Term Memory (LSTM) and simple Gated Recurrent Unit (GRU) models. The GRU model gave optimal BFI values during the four seasons with average NSE = 0.98, KGE = 0.97, r = 0.89 and future baseflow volumes are predicted. AI offers easier and more accurate approach to groundwater management and surface runoff modeling to create effective water policy frameworks for disaster management.

  • PDF

Analysis of Tropospheric Carbon Monoxide using MOPITT data

  • Lee, Sang-Hee;Park, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.373-377
    • /
    • 2002
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This work analyzes tropospheric carbon monoxide distributions using MOPITT data in East Asia and compared ozone distributions. In general, seasonal CO variations are characterized by a spring peak and decreased in the summer. Also, this work revealed that the seasonal cycles of CO are spring maximum and summer minimum with averaged concentrations ranging from 118ppbv to 170ppbv. The CO monthly means show a similar profiles to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, transport of the CO in the northeast Asia. The CO and O3 seasonal cycles in northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of O3 and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and O3, which tend to give the apparent minimum in summer.

  • PDF

Subseasonal-to-Seasonal (S2S) Prediction of GloSea5 Model: Part 2. Stratospheric Sudden Warming (GloSea5 모형의 계절내-계절 예측성 검정: Part 2. 성층권 돌연승온)

  • Song, Kanghyun;Kim, Hera;Son, Seok-Woo;Kim, Sang-Wook;Kang, Hyun-Suk;Hyun, Yu-Kyung
    • Atmosphere
    • /
    • v.28 no.2
    • /
    • pp.123-139
    • /
    • 2018
  • The prediction skills of stratospheric sudden warming (SSW) events and its impacts on the tropospheric prediction skills in global seasonal forecasting system version 5 (GloSea5), an operating subseasonal-to-seasonal (S2S) model in Korea Meteorological Administration, are examined. The model successfully predicted SSW events with the maximum lead time of 11.8 and 13.2 days in terms of anomaly correlation coefficient (ACC) and mean squared skill score (MSSS), respectively. The prediction skills are mainly determined by phase error of zonal wave-number 1 with a minor contribution of zonal wavenumber 2 error. It is also found that an enhanced prediction of SSW events tends to increase the tropospheric prediction skills. This result suggests that well-resolved stratospheric processes in GloSea5 can improve S2S prediction in the troposphere.

Analysis on short-term decay heat after shutdown during load-follow operation with seasonal and daily scenarios

  • Hwang, Dae Hee;Kim, Yonghee
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3878-3887
    • /
    • 2022
  • For the future energy-mix policy for carbon neutrality, demand for the capability of load-follow operation has emerged in nuclear power plants in order to accommodate the intermittency of renewable energy. The short-term decay heat analysis is also required to evaluate the decay heat level varied by the power level change during the load-follow operation, which is a very important parameter in terms of short-term decay heat removal during a grace time. In this study, the short-term decay heat level for 10 days after the shutdown was evaluated for both seasonal and daily load-follow cases. Additionally, the nuclide-wise contribution to the accumulated decay heat for 10 days was analyzed for further understanding of the short-term decay heat behavior. The result showed that in the seasonal case, the decay heat level was mainly determined by the power level right before the shutdown and the amount of each nuclide was varied with the power variation due to the long variation interval of 90 days. Whereas, in the daily case, the decay heat level was strongly impacted by the average power level during operation and meaningful mass variations for those nuclides were not observed due to the short variation interval of 0.5 days.

Analysis of PM2.5 Concentration and Contribution Characteristics in South Korea according to Seasonal Weather Patternsin East Asia: Focusing on the Intensive Measurement Periodsin 2015 (동아시아 지역의 계절별 기상패턴에 따른 우리나라 PM2.5 농도 및 기여도 특성 분석: 2015년 집중측정 기간을 중심으로)

  • Nam, Ki-Pyo;Lee, Dae-Gyun;Jang, Lim-Seok
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.3
    • /
    • pp.183-200
    • /
    • 2019
  • In this study, the characteristics of seasonal $PM_{2.5}$ behavior in South Korea and other Northeast Asian regions were analyzed by using the $PM_{2.5}$ ground measurement data, weather data, WRF and CMAQ models. Analysis of seasonal $PM_{2.5}$ behavior in Northeast Asia showed that $PM_{2.5}$ concentration at 6 IMS sites in South Korea was increased by long-distance transport and atmospheric congestion, or decreased by clean air inflow due to seasonal weather characteristics. As a result of analysis by applying BFM to air quality model, the contribution from foreign countries dominantly influenced the $PM_{2.5}$ concentrations of Baengnyeongdo due to the low self-emission and geographical location. In the case of urban areas with high self-emissions such as Seoul and Ulsan, the $PM_{2.5}$ contribution from overseas was relatively low compared to other regions, but the standard deviation of the season was relatively high. This study is expected to improve the understanding of the air pollutant phenomenon by analyzing the characteristics of $PM_{2.5}$ behavior in Northeast Asia according to the seasonal weather condition change. At the same time, this study can be used to establish the air quality policy in the future, knowing that the contribution of $PM_{2.5}$ concentration to the domestic and overseas can be different depending on the regional emission characteristics.

Dam Inflow Evaluation using Hydrograph Analysis (수문곡선 분리를 통한 댐 유입량 평가)

  • Jung, Younghun
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.3
    • /
    • pp.95-105
    • /
    • 2018
  • Understanding the composition of the dam inflow can improve the efficiency of dam operation considering the seasonal characteristics. Hydrograph analysis is one of the methods to identify the characteristics of dam inflow. In addition, baseflow separation on the dam inflow can be affected by anthropogenic influences depending on dam locations. In this regard, the objectives of this study are 1) to analyze yearly and monthly baseflow contribution to the dam inflow and 2) to compare the baseflow contribution to the inflow in dams located upstream and downstream of the watershed. The result shows that the estimated baseflow index was smaller in the upstream dams compared to the downstream dams. Discharge from the upstream water infrastructure including dams and reservoirs can be a part of inflow into the downstream water infrastructure. Based on this scenario, the discharge regulated from the upstream dam could lead to overestimation of baseflow contribution to inflow into the downstream dam. We expect that the results from this study elucidate the role and function of dams and hence, contribute to the efficient operation of dams located in the upstream and the downstream of the watershed.

The Estimation of the contribution rate of Mokpo Municipal Sewage Treatment Plant to the Improvement of Marine Water Quality in Mokpo Harbour (목포항 수질개선에 대한 목포하수처리장의 기여율 산정)

  • Kim Kwang-Soo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.37-44
    • /
    • 2003
  • In order to evaluate the contribution of MMSTP operation to the improvement of marine water quality of Mokpo harbour and to estimate the change of pollution loads flowing into Mokpo harbour after the operation of Mokpo Municipal Sewage Treatment Plant (MMSTP), the pollution loads flowing into Mokpo harbour from land in dry weather were surveyed and estimated on the bases of the seasonal flow rates and the seasonal water qualities of streams and effluents located around Mokpo harbour from summer, 1997 to spring, 1998 before the operation of MMSTP, and the pollution loads of the inflow and the effluent of MMSTP were also surveyed and estimated from winter, 1998 to spring, 1999 after the operation of MMSTP. The treatment rates of MMSTP were shown to be about 49% in COD, 76% in TSS, 79% in VSS, 3% in T-N, 7% in DIP, 29% In T-P and -32% in DIN. The change rates of pollution loads flowing into the inner harbour of Mokpo due to the operation of MMSTP were shown to be about 56% in COD, 78% in TSS, 84% in VSS, 45% in DIN, 22% in T-N, 34% in T-P and -14% in DIP The contribution rates of MMSTP operation to the reduction of total pollution loads flowing into the entire Mokpo harbour were found to be about 3% in COD, 3% in TSS, 5% in VSS, 1% in DIP, 3% in T-P and -1% in DIN.

  • PDF

Analysis of Tropospheric Carbon Monoxide in the Northeast Asia from MOPITT

  • Lee, Sang-Hee;Choi, Gi-Hyuk;Lim, Hyo-Suk;Lee, Joo-Hee
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.217-221
    • /
    • 2003
  • The Measurement of Pollution in the Troposphere (MOPITT) instrument is an eight-channel gas correlation radiometer that launched on the Earth Observing System (EOS) Terra spacecraft in 1999. Its main objectives are to measure carbon monoxide (CO) and methane (CH4) concentrations in the troposphere. This study analyzes tropospheric carbon monoxide distributions using MOPITT data and compare with ozone distributions in Northeast Asia. In general, seasonal CO variations are characterized by a peak in spring and decrease in summer. Also, this study revealed that the seasonal cycles of CO are maximum in spring and minimum in summer with average concentrations ranging from 118ppbv to 170ppbv. The monthly average of CO shows a similar profile to those of O3. This fact clearly indicates that the high concentration of CO in spring is caused by two possible causes: the photochemical CO production in the troposphere, or the transport of the CO in the northeast Asia. The CO and $O_3$ seasonal cycles in the Northeast Asia are influenced extensively by the seasonal exchange of the different types of air mass due to the Asian monsoon. The continental air masses contain high concentrations of $O_3$ and CO due to higher continental background concentrations and sometimes due to the contribution of regional pollution. In summer the transport pattern is reversed. The Pacific marine air masses prevail over Korea, so that the marine air masses bring low concentrations of CO and $O_3$, which tend to give the apparent minimum in summer.

Influence of Surface Heterogeneity on Turbulent Transfer in the Surface Layer (지표면의 비균질성이 지표층의 난류수송에 미치는 영향)

  • Hong, Seon-Ok;Lee, Young-Hee;Lim, Yoon-Jin
    • Atmosphere
    • /
    • v.24 no.3
    • /
    • pp.317-329
    • /
    • 2014
  • Eddy covariance data have been analyzed to investigate the influence of surface heterogeneity on turbulent transfer over farmland and industrial sites near Nakdong river, Korea, where both large and small scale heterogeneities co-exist. For this purpose, basic turbulent statistics, quadrant analysis and multi-resolution decomposition have been analyzed during the daytime. Basic turbulent statistics were compared with typical turbulent statistics in the surface layer. Such comparisons were in close agreement for momentum and heat at both sites but not for water vapor at industrial site. The correlation coefficient between water vapor and vertical velocity ($r_{wq}$) is relatively low and skewness of water vapor ($sk_q$) is very low at industrial site, possibly due to limited water source. For heat at both sites and water vapor at farmland, the quadrant analysis show similar behavior to that over homogeneous site but for water vapor at industrial site, the presence of river and limited water source at industrial site seems to influence on water vapor transfer by coherent eddy motion by increasing sweep contribution and decreasing ejection contribution. Multi-resolution decomposition analysis shows that large scale heterogeneity leads to low $r_{Tq}$ at large averaging time regardless of season at both sites and there are seasonal changes of $r_{Tq}$ in mid-averaging times at industrial site, possibly due to seasonal change of trees and grasses near the site.