• Title/Summary/Keyword: Seasonal CMB results

Search Result 4, Processing Time 0.017 seconds

Application of chemical Mass Balance Model for the Source Apportionment of Polynuclear Aromatic Hydrocarbons in Urban Atmosphere (도시 대기오염물중 다환방향족 탄화수소의 배출원 규명을 위한 화학물질 수지모델의 적용)

  • 구자공;서영화
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.4
    • /
    • pp.229-239
    • /
    • 1992
  • A receptor model application was performed by using a chemical mass balance (CMB) model to identify and apportion the specific source of airborne organic pollutants, particularly polynuclear aromatic hydrocarbons (PAHs). Source profiles of PAHs produced from the combustion of fossil fuels for CMB modeling were prepared by measuring them in emission gases. The emission sources which were examineed for the development of PAH source profiles are a coal-fired furnace using Yontan, a bunker-C iol heating boiler, and gasoline-and diesel engine automobiles. The ambient concentrations of PAHs were determined at four sites in Daejon city in 1991 with a seasonal variation. Wintertime air samples contained more extractable organic matter than summertime samples. The results of CMB modeling were various depending on the sampling sites and seasons, but the emission from bunker-C oil heating boliers was the predominant factor to affect local air quality throughout the year.

  • PDF

Development of a Receptor Methodology for Quantitative Assessment of Ambient PM-10 Sources in Suwon Area (수원지역 대기 중 PM-10 오염원의 정량평가를 위한 수용방법론의 개발)

  • 김관수;황인조;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.17 no.2
    • /
    • pp.119-131
    • /
    • 2001
  • A total of 328 ambient PM-10 samples was collected by a PM-10 high volume air sampler during the periods of February 1997 to February 1999 from Kyung Hee University at Suwon Campus. The samples were analyzed for their bulk chemical compositions(Cu, Fe, Pb, Zn, Al, $Na^{+}$, $NH_{4}^{+}$, $K^{+}$, $Ca^{2+]$, $Mg^{2+}$, $Cl^{-}$, $NO_{3}^{-}$, and $SO_{4}^{2-}$ by both an atomic absorption spectrophotometer and an ion chromatograph. The purpose of this study was t develop a receptor methodology for quantitative assessment of PM-10 sources. The data obtained from this study were ex-tensively examined using the target transformation factor analysis(TTFA) and the chemical mass balance (CMB). When TTFA was initially applied seasonal basis. five sources(such as automobile-related, sulfate-related, incine-ration, soil and combustion-related) were identified both during winter and fall. Since the total number and the type of sources were resolved by TTFA for the four seasons, CMB was employed to cross-check the results of TTEA. The total of six source categories identified by TTEA was intensively investigated on the basis of source profiles acquired from various source libraries established both in Korea and abroad. The results of this study showed the applicability of two popular receptor models as a new methdology for quantitative assessment PM-10 sources in Korea. Seasonally segmented data sets with the combined application of TTFA and CMB yielded a physically reasonable source apportionment result and provided a mean to increase the number of potential sources. Furthermore, this study suggested the possibility of the CMB application to ambi-ent data from Korea after identifying potential sources through traditional factor analysis.

  • PDF

Application of Representative $PM_{2.5}$ Source Profiles for the Chemical Mass Balance Study in Seoul

  • Kang, Choong-Min;Kang, Byung-Wook;SunWoo, Young;Lee, Hak-Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.E1
    • /
    • pp.32-43
    • /
    • 2008
  • Source samples were collected to construct source profiles for 9 different source types, including soil, road dust, gasoline/diesel-powered vehicles, a municipal incinerator, industrial sources, agricultural/biomass burning, marine aerosol, and a coal-fired power plant. Seasonal profiles for 'Chinese aerosol', aerosols derived from the urban area of China, were reconstructed from seasonal $PM_{2.5}$ compositions reported in Beijing, China. Ambient $PM_{2.5}$ at a receptor site was also measured during each of the four seasons, from April 2001 to February 2002, in Seoul. The Chemical Mass Balance receptor model was applied to quantify source contributions during the study period using the estimated source profiles. Consequently, motor vehicle exhaust (33.0%), in particular 23.9% for diesel-powered vehicles, was the largest contributor affecting the $PM_{2.5}$ levels in Seoul, followed by agricultural/biomass burning (21.5%) and 'Chinese aerosol' (13.1%), indicating contributions from long-range transport. The largest contributors by season were: for spring, 'Chinese aerosol' (31.7%); for summer, motor vehicle exhaust (66.9%); and for fall and winter, agricultural/biomass burning (31.1% and 40.1%, respectively). These results show different seasonal patterns and sources affecting the $PM_{2.5}$ level in Seoul, than those previously reported for other cities in the world.

Source Apportionment of Fine Particle $PM_{2.5}$ in Beijing, China

  • Zhang, Yuanhang;Zhu, Xianlei;Zeng, Limin;Wang, Wei
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.216-225
    • /
    • 2003
  • Fine particles with aerodynamic diameter less than 2.5 ${\mu}m$ (PM2.5) were collected from three sites in Beijing during April, August, and November 2000 and January 2001. After chemical components in samples are analyzed, a chemical mass balance (CMB) receptor model using PARs as tracers is applied to quantify the source contributions to PM2.5 in Beijing. The results show that the major sources are coal combustion, fugitive dust, vehicle exhaust, secondary sulfate and nitrate, and organic matter while biomass burning and construction dust contribute only a small fraction. In addition, source inventory in Beijing is used to determine the primary source contributions. The two methods result in comparable results. Source apportionment at three sampling sites presents similar contributions to PM2.5 although the sites are far away from each other. However, distinct seasonal pattern is presented for the source contributions from coal combustion, fugitive dust, biomass burning, secondary sulfate and nitrate.

  • PDF