• 제목/요약/키워드: Searching

검색결과 5,613건 처리시간 0.033초

중국 전통 길상 어(魚)문양을 응용한 중국 기업의 아이덴티티 디자인 동향 (A Study on Chinese Traditional Auspicious Fish Pattern Application in Corperate Identity Design)

  • 장청추
    • 만화애니메이션 연구
    • /
    • 통권50호
    • /
    • pp.349-382
    • /
    • 2018
  • 중국은 다양한 민족의 형성과 아울러 문화의 유구한 역사를 대변하는 문명대국이다.그 중에서도 전통 문화 콘텐츠인 길상 문양은 이데올로기가 격동했던 중국의 역사 변천 과정을 겪으면서 지금까지 중국인들의 민족감성을 자극하는 감성 키워드로 자리잡고 있다. 그 중 길상문양은 중국의 길고 긴 온고지신의 인내를 통해 풍부한 전통문화 콘텐츠의 기반이 되었고, 그러한 감성 문화 자원의 기반아래 하나의 전통 문화 콘텐츠의 중심이 되었다고 해도 과언이 아니다. 길상문양은 중국의 역사와 민족 감성을 대변하는 일종의 표현 수단으로 사람들의 생활관습과 정서, 문화배경에 대한 긴밀한 대변자 역할을 감당하는 키워드가 되었다. 또한, 길상문양은 일종의 마을의 토템신앙의 가치를 지니며 동시에 정보 전달의 기능도 포함하고 있다. 이러한 정보의 상징성은 결국 길상 문양의 형성에 기반이 되었으며, 길상문양이라는 개념적 키워드로 발현하고 있다. 길상문양의 종류는 너무나 다양하여 모든 문양을 연구하기에는 그 범위가 광범위하고 깊어 연구의 전문성에 한계를 가지고 있다. 그래서 본 연구는 길상문양 중에서도 어(魚)문양을 연구한다. 어(魚)문양은 중화민족이 창조한 최초의 길상 서금 문양(동물문:動物紋)이 되었고, 중국에서는 이미 육천년의 역사를 가지게 되었다. 어(魚)문양의 독특한 이미지와 길상의 의미가 중화민족에게는 특유의 고유한 문화 콘텐츠를 보여 주었으며, 중국전통문화를 구성하는 중요한 콘텐츠가 되었다. 전통 어(魚)문양에 대한 현대의 연구는 역사에 대한 상징성과 문양 이미지에 더 많은 의미를 부여하였고, 어(魚)문양의 상징적인 의미로서는 현대적 디자인과 결합시키는 데 신경을 많이 쓰지 않았다. 따라서 어(魚)문양의 길상적 의미와 이미지에 대한 연구를 통해 전통 어(魚)문양이 현대 기업 아이던티티 디자인에 어떠한 가치를 주는지에 대해 분석하고자 하는 것이 본 연구의 목적이다. 연구방법은 중국 전통 어(魚)문의 역사 및 길상이 함의하고 있는 상징성을 연구함으로써 어(魚)문양이 민족, 문화, 예술, 생활 등 각 측면에서 영향을 준 의의와 문화 콘텐츠를 분석하고, 전통 어(魚)문양을 응용한 기업 아이던티티 디자인 사례들을 분석하고자 한다. 또한 소비자의 브랜드 의식, 구매심리, 어(魚)문양의 심리적인 영향력 등에 대한 생각을 파악하고, 더욱 더 어(魚)문양이 기업 아이덴티티 디자인에 대한 영향력을 잘 설명하기 위하여 설문조사도 같이 진행하고자 한다. 조사 대상은 중국 20세 이상의 성인 연령층 총100명의 소비자들이다. 전통 어(魚)문양은 현대적 디자인에 영향을 미친 중요한 구심점이 될 수 있다. 따라서 본 연구는 전통 어(魚)문양을 기업 이미지로 표방한 사례를 통해 분석된 내용들은 대다수 중국인들에게 전통 길상 문양에 대한 긍정적 인식을 제고할 수 있으며, 신뢰성을 바탕으로 한 기업 호감지수에 어떠한 긍정적 영향을 미쳤는지에 대하여 고찰하고자 한다. 현대 중국 기업 아이덴티티 디자인에 있어 길상의 상서로운 이미지를 현대적으로 재해석함으로서 소비자들에게 민족적 감성 인지와 더불어 기업에 대한 이미지의 호감도를 극대화 시키는지에 대한 반응을 설문조사하고, 그 결론을 유추하여 전통컨셉의 활용에 대한 발전가능성을 예측하고자 한다.

B2C허의사구중적전자구비(B2C虚拟社区中的电子口碑): 관우휴정려유망적실증연구(关于携程旅游网的实证研究) (Electronic Word-of-Mouth in B2C Virtual Communities: An Empirical Study from CTrip.com)

  • Li, Guoxin;Elliot, Statia;Choi, Chris
    • 마케팅과학연구
    • /
    • 제20권3호
    • /
    • pp.262-268
    • /
    • 2010
  • 虚拟社区(virtual community, VC)今年来发展迅速, 越来越多的人参与到虚拟社区中交换信息和分享观点. 虚拟社区是通过计算机布告板和网络进行非面对面的知识和语言交流的一种大众集合体. B2C电子商务网站虚拟社区则是商业性的虚拟社区, 通过培养信任环境来促进消费者在该网站的购买行为. B2CVC通过信息交流, 如推荐, 评论, 买者与卖者评级等, 来建立社会性的氛围. 目前, 虽然学术界已经认识到B2CVC的重要性, 但是关于社区成员的口碑传播行为的研究还不充分. 本研究提出了一个理论模型, 探讨在B2C网站社区中参与度, 满意度, 信任度, 粘度和口碑传播之间的关系. 本研究的目的有三个: 1, 通过整合信念, 态度和行为的测量来实证检验B2C网站社区模型; 2, 更好地理解各因素对口碑传播的影响关系; 3, 更好地理解B2C网站社区黏度在CRM营销中的作用. 研究模型包含以下要素: 1, 社区成员的信念变量, 通过参与度来测量; 2, 社区成员的态度变量, 通过满意度和信任度来测量; 以及3, 社区成员的行为变量, 通过网站黏度和口播传播意愿来测量. 参与度是消费者在虚拟社区的参与动机. 对于社区成员来说, 信息的查找和发布是他们参与到社区的主要目的. 满意度是成员对社区整体评价的重要指标, 反映了成员与社区的交互程度. 虚拟社区的形成与发展依靠成员分享信息和服务的自愿程度. 研究者已经发现信任是促进匿名交互的关键, 因此构建信任被看作是虚拟社区的重要研究课题. 此外, 虚拟社区的成功依靠成员的粘度来提高购买潜力. 社区成员间的观点交流和信息交换代表一种 "写作式" 的口碑传播. 因此口碑传播是推动B2C虚拟社区在互联网上扩散的主要因素之一. 研究模型及假设如图一所示. 本研究通过实证调查中国携程旅游网虚拟社区成员来验证模型. 数据收集过程中共发放243份问卷, 其中有效问卷204份. 通过实证数据验证了参与度, 满意度和信任度影响粘度和口碑传播之间的假设关系. 结构方程模型(SEM)方法用来进行数据分析. 模型的拟合指数结果为χ2/df 是2.76, NFI是 .904, IFI是 .931, CFI是 .930, 以及RMSEA是 .017. 结果表明, 参与度对满意度具有显著的影响(p<0.001, ${\beta}$=0.809). 参与度可以解释满意度的方差比例超过50%, 调整R2为0.654. 参与度对信任度具有显著影响(p<0.001, ${\beta}$=0.751), 解释率为57%, 调整R2为0.563. 此外, 满意度对黏度的影响显著(${\beta}$=0.514), 但是信任度对黏度的影响并不显著(p=0.231, t=1.197). 黏度对口碑传播的影响显著, 且解释率超过80%, 调整R2为 0.846. 总之, 研究结果支持了大部分的研究假设, 但是信任度显著影响粘度的假设没有得到支持. 本研究丰富了电子商务网站虚拟社区的学术研究成果, 深入探讨了在B2C电子商务环境下的用户信念, 态度和行为等因素. 研究成果有助于实践者进行更有针对性的资源开发和市场开拓. 网络营销人员可以针对B2C网站社区来有针对性地制定营销策略, 如对于国际旅游业务, 营销人员可以针对中国的B2C网站社区用户开展营销活动, 如为活跃的用户提供特殊折扣以及为早期参与者提高社区黏度定制营销计划等. 未来的研究应该拓展社区成员行为的研究, 并在不同的行业, 社区和文化背景下开展研究.

토픽 모델링을 이용한 트위터 이슈 트래킹 시스템 (Twitter Issue Tracking System by Topic Modeling Techniques)

  • 배정환;한남기;송민
    • 지능정보연구
    • /
    • 제20권2호
    • /
    • pp.109-122
    • /
    • 2014
  • 현재 우리는 소셜 네트워크 서비스(Social Network Service, 이하 SNS) 상에서 수많은 데이터를 만들어 내고 있다. 특히, 모바일 기기와 SNS의 결합은 과거와는 비교할 수 없는 대량의 데이터를 생성하면서 사회적으로도 큰 영향을 미치고 있다. 이렇게 방대한 SNS 데이터 안에서 사람들이 많이 이야기하는 이슈를 찾아낼 수 있다면 이 정보는 사회 전반에 걸쳐 새로운 가치 창출을 위한 중요한 원천으로 활용될 수 있다. 본 연구는 이러한 SNS 빅데이터 분석에 대한 요구에 부응하기 위해, 트위터 데이터를 활용하여 트위터 상에서 어떤 이슈가 있었는지 추출하고 이를 웹 상에서 시각화 하는 트위터이슈 트래킹 시스템 TITS(Twitter Issue Tracking System)를 설계하고 구축 하였다. TITS는 1) 일별 순위에 따른 토픽 키워드 집합 제공 2) 토픽의 한달 간 일별 시계열 그래프 시각화 3) 토픽으로서의 중요도를 점수와 빈도수에 따라 Treemap으로 제공 4) 키워드 검색을 통한 키워드의 한달 간 일별 시계열 그래프 시각화의 기능을 갖는다. 본 연구는 SNS 상에서 실시간으로 발생하는 빅데이터를 Open Source인 Hadoop과 MongoDB를 활용하여 분석하였고, 이는 빅데이터의 실시간 처리가 점점 중요해지고 있는 현재 매우 주요한 방법론을 제시한다. 둘째, 문헌정보학 분야뿐만 아니라 다양한 연구 영역에서 사용하고 있는 토픽 모델링 기법을 실제 트위터 데이터에 적용하여 스토리텔링과 시계열 분석 측면에서 유용성을 확인할 수 있었다. 셋째, 연구 실험을 바탕으로 시각화와 웹 시스템 구축을 통해 실제 사용 가능한 시스템으로 구현하였다. 이를 통해 소셜미디어에서 생성되는 사회적 트렌드를 마이닝하여 데이터 분석을 통한 의미 있는 정보를 제공하는 실제적인 방법을 제시할 수 있었다는 점에서 주요한 의의를 갖는다. 본 연구는 JSON(JavaScript Object Notation) 파일 포맷의 1억 5천만개 가량의 2013년 3월 한국어 트위터 데이터를 실험 대상으로 한다.

소셜 뉴스를 위한 시간 종속적인 메타데이터 기반의 컨텍스트 공유 프레임워크 (Context Sharing Framework Based on Time Dependent Metadata for Social News Service)

  • 가명현;오경진;홍명덕;조근식
    • 지능정보연구
    • /
    • 제19권4호
    • /
    • pp.39-53
    • /
    • 2013
  • 인터넷의 발달과 SNS의 등장으로 정보흐름의 방식이 크게 바뀌었다. 이러한 변화에 따라 소셜 미디어가 급부상하고 있으며 소셜 미디어와 비디오 콘텐츠가 융합된 소셜 TV, 소셜 뉴스의 중요성이 강조되고 있다. 이러한 환경 속에서 사용자들은 단순히 콘텐츠를 탐색만 하는 것이 아니라 같은 콘텐츠를 이용하고 있는 친구들이나 지인들과 콘텐츠에 대한 정보나 경험들을 공유하고 더 나아가 새로운 콘텐츠를 만들어내기도 한다. 하지만 기존의 소셜 뉴스에서는 이러한 사용자들의 특성을 반영해 주지 못하고 있다. 특히 이용자들의 참여성만을 고려하고 있어서 서비스간의 차별화가 어렵고 뉴스 콘텐츠에 대한 정보나 경험 공유 시 컨텍스트 공유가 어렵다는 문제가 있다. 이를 해결하기 위해 본 논문에서는 뉴스를 내용별로 분할하고 분할된 뉴스에서 추출된 시간 종속적인 메타데이터를 제공하는 프레임워크를 제안한다. 제안하는 프레임워크에서는 스토리 분할 방법을 이용하여 뉴스 대본을 내용별로 분할한다. 또한 뉴스 전체내용을 대표하는 태그, 분할된 뉴스를 나타내는 서브 태그, 분할된 뉴스가 비디오에서 시작하는 위치 즉, 시간 종속적인 메타데이터를 제공한다. 소셜 뉴스 이용자들에게 시간 종속적인 메타데이터를 제공한다면 이용자들은 전체의 뉴스 내용 중에 자신이 원하는 부분만을 탐색 할 수 있으며 이 부분에 대한 견해를 남길 수 있다. 그리고 뉴스의 전달이나 의견 공유 시 메타데이터를 함께 전달함으로써 전달하고자 하는 내용에 바로 접근이 가능하며 프레임워크의 성능은 추출된 서브 태그가 뉴스의 실제 내용을 얼마나 잘 나타내 주느냐에 따라 결정된다. 그리고 서브 태그는 스토리 분할의 정확성과 서브 태그를 추출하는 방법에 따라 다르게 추출된다. 이 점을 고려하여 의미적 유사도 기반의 스토리 분할 방법을 프레임워크에 적용하였고 벤치마크 알고리즘과 성능 비교 실험을 수행하였으며 분할된 뉴스에서 추출된 서브 태그들과 실제 뉴스의 내용을 비교하여 서브 태그들의 정확도를 분석하였다. 결과적으로 의미적 유사도를 고려한 스토리 분할 방법이 더 우수한 성능을 보였으며 추출된 서브 태그들도 컨텍스트와 관련된 단어들이 추출 되었다.

온톨로지 기반 영화 메타데이터간 연관성을 활용한 영화 추천 기법 (The Ontology Based, the Movie Contents Recommendation Scheme, Using Relations of Movie Metadata)

  • 김재영;이석원
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.25-44
    • /
    • 2013
  • 최근 IPTV와 스마트 TV 등의 등장과 영상 콘텐츠를 시청하고 검색할 수 있는 웹 서비스의 등장으로 영상 콘텐츠의 접근이 용이해져 사용자들은 자신이 원하는 콘텐츠를 찾고자 하는 요구가 증가하고 있다. 하지만 서비스되는 콘텐츠의 양이 방대하여 영상 콘텐츠를 검색할 때 사용하는 키워드 기반의 검색은 많은 양의 결과를 가져오며 사용자가 필요로 하지 않은 결과가 검색된다. 따라서 사용자가 원하는 콘텐츠의 검색 시간과 노력이 증가 하게 되었다. 이를 극복 하기 위해 콘텐츠 추천 및 검색에 대한 연구가 수행되어 왔다. 기존의 연구에는 사용자의 선호도 분석을 통하여 영상 콘텐츠를 추천하거나 비슷한 성향을 가지는 사용자들을 분류하여 콘텐츠를 추천하는 기법들이 연구되어 왔다. 본 논문에서는 영상 콘텐츠 중 영화의 추천을 위해 사용자 개인의 영화 메타데이터의 선호도를 분석하고, 영화의 메타데이터와 영화의 유사성을 도출하여 이를 기반으로 영화 추천 기법을 제안한다. 영화의 특징을 담고 있고, 사용자의 영화 선호도에 영향을 끼치는 장르, 줄거리, 배우, 키워드 등의 영화 메타데이터를 기반으로 온톨로지를 구축하고, 확률 기법을 통한 메타 데이터간의 유사성을 분석하여 유사 메타데이터를 연결한다. 또한 사용자의 선호도와 그룹을 정의하고, 사용자 정보를 활용하기 위한 사용자 모델을 정의한다. 제안하는 추천 기법은 1) 사용자 정보기반의 후보 영화 검색 컴포넌트, 2) 사용자 선호기반의 후보 영화 검색 컴포넌트, 3) 1)과 2)의 결과를 통합하고 가중치를 부여하는 컴포넌트, 4) 최종결과의 분석을 통한 개인화된 영화 추천 컴포넌트 등 총 4가지 컴포넌트로 구성된다. 제안하는 추천 기법의 실험을 위하여 20대 남/녀 10명씩 20명을 대상으로 실험을 진행하였으며, 실험결과 평균 Top-5에서 2.1개 Top-10에서 3.35개 Top-20에서 6.35의 영화가 보고 싶은 영화로 선택되었다. 본 논문에서는 영화 메타데이터간의 연관성 도출을 통하여 영화간의 유사성을 도출하고 이를 기반으로 사용자의 기본적인 정보를 활용한 추천뿐만 아니라 사용자가 예상하지 못한 영화의 추천이 가능하다.

웹검색 트래픽 정보를 활용한 지능형 브랜드 포지셔닝 시스템 : 태블릿 PC 사례를 중심으로 (Intelligent Brand Positioning Visualization System Based on Web Search Traffic Information : Focusing on Tablet PC)

  • 전승표;박도형
    • 지능정보연구
    • /
    • 제19권3호
    • /
    • pp.93-111
    • /
    • 2013
  • 최근 독감 예측이나 부동산가격 예측 등 다양한 분야에서 웹검색 트래픽이나 소셜 네트워크 등의 방대한 고객 데이터를 통해 사회 현상, 소비 트렌드 등을 분석하고자 하는 시도가 증가하고 있다. 최근 구글이나 네이버 등의 인터넷 포털서비스 업체들은 온라인 사용자들의 웹검색 트래픽 정보를 구글 트렌드, 네이버 트렌드 등의 서비스로 공개하고 있는데, 이들이 제공하는 웹검색 트래픽 정보를 기반으로 온라인 사용자들의 정보 검색 행태에 대한 연구들이 학계 업계 등에서 주목받고 있다. 웹검색 정보를 기반으로 사회 현상이나, 소비 동향, 정치 투표 결과 등을 예측해 볼 수 있음을 실증하고 있는 분야는 많은 연구가 수행되고 있지만, 웹검색 트래픽 정보를 이용하여, 소비자의 제품에 대한 중요한 속성 도출 및 소비자의 기대 변화 관측 등의 온라인 사용자 행태에 초점을 맞추어 연구되고 있는 분야는 상대적으로 많은 연구가 수행되고 있지는 않다. 따라서, 본 연구에서는 구글이나 네이버가 제공하는 소비자의 웹검색 트래픽을 활용해서 소비자가 생각하는 제품 포지션을 가시화할 수 있는 방법을 제안한다. 브랜드 간의 관계를 확인하기 위해, 동시 검색 트래픽 정보를 활용하여 네트워크 모델링의 방법을 사용한 시스템을 제안하고 있으며, 이를 통해 소비자들이 제품 간의 유사성을 어떻게 인지하고 형성하며, 새로운 혁신 제품 카테고리 내에서 제품 브랜드들이 소비자의 마음 속에서 어떻게 자리 잡고 있는지의 브랜드 포지셔닝을 확인할 수 있는 방법론을 제안하였다. 또한 이를 태블릿 PC의 사례를 통해서, 미시적인 관점에서 소비자의 마음속에 위치한 태블릿 PC 개별 브랜드들의 위치 및 관계를 보여주었다. 기업은 소비자의 제품에 대한 인식 및 중요 속성 도출을 위해 많은 비용과 시간을 소요하여 소비자 조사를 행하게 되는데, 본 연구의 방법론을 활용하여 소비자의 제품에 대한 인식, 제품간 유사도, 제품에 대한 중요 속성의 변화 등을 일반에게 공개된 검색 트래픽 정보를 활용하여 비교적 쉽고 추가적인 비용 없이 도출할 수 있을 것이다.

모바일 랜드마크 가이드 : LOD와 문맥적 장치 기반의 실외 증강현실 (A Mobile Landmarks Guide : Outdoor Augmented Reality based on LOD and Contextual Device)

  • 조비성;누르지드;장철희;이기성;조근식
    • 지능정보연구
    • /
    • 제18권1호
    • /
    • pp.1-21
    • /
    • 2012
  • 최근 스마트폰의 등장으로 인해 사용자들은 시간과 공간의 제약 없이 스마트폰을 이용한 새로운 의사소통의 방법을 경험하고 있다. 이러한 스마트폰은 고화질의 컬러화면, 고해상도 카메라, 실시간 3D 가속그래픽과 다양한 센서(GPS와 Digital Compass) 등을 제공하고 있으며, 다양한 센서들은 사용자들(개발자, 일반 사용자)로 하여금 이전에 경험하지 못했던 서비스를 경험할 수 있도록 지원하고 있다. 그 중에서 모바일 증강현실은 스마트폰의 다양한 센서들을 이용하여 개발할 수 있는 대표적인 서비스 중 하나이며, 이러한 센서들을 이용한 다양한 방법의 모바일 증강현실 연구들이 활발하게 진행되고 있다. 모바일 증강현실은 크게 위치 정보 기반의 서비스와 내용 기반 서비스로 구분할 수 있다. 위치 정보 기반의 서비스는 구현이 쉬운 장점이 있으나, 증강되는 정보의 위치가 실제의 객체의 정확한 위치에 증강되는 정보가 제공되지 않는 경우가 발생하는 단점이 존재한다. 이와 반대로, 내용 기반 서비스는 정확한 위치에 증강되는 정보를 제공할 수 있으나, 구현 및 데이터베이스에 존재하는 이미지의 양에 따른 검색 속도가 증가하는 단점이 존재한다. 본 논문에서는 위치 정보 기반의 서비스와 내용기반의 서비스의 장점들을 이용한 방법으로, 스마트폰의 다양한 센서(GPS, Digital Compass)로 부터 수집된 정보를 이용하여 데이터베이스의 탐색 범위를 줄이고, 탐색 범위에 존재하는 이미지들의 특징 정보를 기반으로 실제의 랜드마크를 인식하고, 인식한 랜드마크의 정보를 링크드 오픈 데이터(LOD)에서 검색하여 해당 정보를 제공하는 랜드마크 가이드 시스템을 제안한다. 제안하는 시스템은 크게 2개의 모듈(랜드마크 탐색 모듈과 어노테이션 모듈)로 구성되어있다. 첫 번째로, 랜드마크 탐색 모듈은 스마트폰으로 인식한 랜드마크(건물, 조형물 등)에 해당하는 정보들을 (텍스트, 사진, 비디오 등) 링크드 오픈 데이터에서 검색하여 검색된 결과를 인식한 랜드마크의 정확한 위치에 정보를 제공하는 역할을 한다. 스마트폰으로부터 입력 받은 이미지에서 특징점 추출을 위한 방법으로는 SURF 알고리즘을 사용했다. 또한 실시간성을 보장하고 처리 속도를 향상 시키기 위한 방법으로는 입력 받은 이미지와 데이터베이스에 있는 이미지의 비교 연산을 수행할 때 GPS와 Digital Compass의 정보를 사용하여 그리드 기반의 클러스터링을 생성하여 탐색 범위를 줄임으로써, 이미지 검색 속도를 향상 시킬 수 있는 방법을 제시하였다. 두 번째로 어노테이션 모듈은 사용자들의 참여에 의해서 새로운 랜드마크의 정보를 링크드 오픈 데이터에 추가할 수 있는 기능을 제공한다. 사용자들은 키워드를 이용해서 링크드 오픈 데이터로에서 관련된 주제를 검색할 수 있으며, 검색된 정보를 수정하거나, 사용자가 지정한 랜드마크에 해당 정보를 표시할 수 있도록 지정할 수 있다. 또한, 사용자가 지정하려고 하는 랜드마크에 대한 정보가 존재하지 않는다면, 사용자는 랜드마크의 사진을 업로드하고, 새로운 랜드마크에 대한 정보를 생성하는 기능을 제공한다. 이러한 과정은 시스템이 카메라로부터 입력 받은 대상(랜드마크)에 대한 정확한 증강현실 컨텐츠를 제공하기 위해 필요한 URI를 찾는데 사용되며, 다양한 각도의 랜드마크 사진들을 사용자들에 의해 협업적으로 생성할 수 있는 환경을 제공한다. 본 연구에서 데이터베이스의 탐색 범위를 줄이기 위해서 랜드마크의 GPS 좌표와 Digital Compass의 정보를 이용하여 그리드 기반의 클러스터링 방법을 제안하여, 그 결과 탐색시간이 기존에는 70~80ms 걸리는 반면 제안하는 방법을 통해서는 18~20ms로 약 75% 정도 향상된 것을 확인할 수 있었다. 이러한 탐색시간의 감소는 전체적인 검색시간을 기존의 490~540ms에서 438~480ms로 약 10% 정도 향상된 것을 확인하였다.

효율적 자원 탐색을 위한 소셜 웹 태그들을 이용한 동적 가상 온톨로지 생성 연구 (Dynamic Virtual Ontology using Tags with Semantic Relationship on Social-web to Support Effective Search)

  • 이현정;손미애
    • 지능정보연구
    • /
    • 제19권1호
    • /
    • pp.19-33
    • /
    • 2013
  • 본 논문에서는 네트워크 기반 대용량의 자원들을 효율적으로 검색하기 위해 사용자의 요구사항에 기반해 검색에 요구되는 태그들 간의 의미론에 기반한 동적 가상 온톨로지(Dynamic Virtual Ontology using Tags: DyVOT)를 추출하고 이를 이용한 동적 검색 방법론을 제안한다. 태그는 소셜 네트워크 서비스를 지원하거나 이로부터 생성되는 정형 및 비정형의 다양한 자원들에 대한 자원을 대표하는 특성을 포함하는 메타적 정보들로 구성된다. 따라서 본 연구에서는 이러한 태그들을 이용해 자원의 관계를 정의하고 이를 검색 등에 활용하고자 한다. 관계 등의 정의를 위해 태그들의 속성을 정의하는 것이 요구되며, 이를 위해 태그에 연결된 자원들을 이용하였다. 즉, 태그가 어떠한 자원들을 대표하고 있는 지를 추출하여 태그의 성격을 정의하고자 하였고, 태그를 포함하는 자원들이 무엇인지에 의해 태그간의 의미론적인 관계의 설정도 가능하다고 보았다. 즉, 본 연구에서 제안하는 검색 등의 활용을 목적으로 하는 DyVOT는 태그에 연결된 자원에 근거해 태그들 간의 의미론적 관계를 추출하고 이에 기반 하여 가상 동적 온톨로지를 추출한다. 생성된 DyVOT는 대용량의 데이터 처리를 위해 대표적인 예로 검색에 활용될 수 있으며, 태그들 간의 의미적 관계에 기반해 검색 자원의 뷰를 효과적으로 좁혀나가 효율적으로 자원을 탐색하는 것을 가능하도록 한다. 이를 위해 태그들 간의 상하 계층관계가 이미 정의된 시맨틱 태그 클라우드인 정적 온톨로지를 이용한다. 이에 더해, 태그들 간의 연관관계를 정의하고 이에 동적으로 온톨로지를 정의하여 자원 검색을 위한 동적 가상 온톨로지 DyVOT를 생성한다. DyVOT 생성은 먼저 정적온톨로지로부터 사용자 요구사항을 포함하는 태그를 포함한 부분-온톨로지들을 추출하고, 이들이 공유하는 자원의 정도에 따라 부분-온톨로지들 간의 새로운 연관관계 여부를 결정하여 검색에 요구되는 최소한의 동적 가상 온톨로지를 구축한다. 즉, 태그들이 공유하는 자원이 무엇인가에 의해 연관관계가 높은 태그들 간에는 이들의 관계를 설명하는 새로운 클래스를 가진 생성된 동적 가상 온톨로지를 이용하여 검색에 활용한다. 온톨로지의 인스턴스는 자원으로 정의되고, 즉 이는 사용자가 검색하고자 하는 해로서 정의된다. 태그들 간의 관계에 의해 생성된 DyVOT를 이용해 기존 정적 온톨로지나 키워드 기반 탐색에 비해 검색해야 할 자원의 량을 줄여 검색의 정확성과 신속성을 향상 시킨다.

국방 온톨로지를 통한 지능형 의사결정지원시스템 구축 및 활용 - 공군 군수상황관리체계 적용 사례 (Construction and Application of Intelligent Decision Support System through Defense Ontology - Application example of Air Force Logistics Situation Management System)

  • 조원기;김학진
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.77-97
    • /
    • 2019
  • 제 4차 산업혁명의 초연결 환경에서 발생하는 많은 양의 데이터는 제 4차 산업혁명을 기존의 생산 환경과 구분지어 주는 주요한 요소이다. 이러한 환경은 데이터를 필요로 하는 동시에 데이터를 생산하는 양면적인 특징을 가진다. 때문에 앞으로의 정보 시스템은 기존의 정보시스템보다 양적인 측면에서 더 많은 데이터를 처리해야 하며, 질적인 측면에서는 많은 데이터 중 사용자의 목적에 부합하는 목표 데이터만을 추출하는 능력이 요구된다. 작은 규모의 정보 시스템에서는 사람이 그 시스템을 정확히 이해하고 필요한 정보를 획득하는 것이 가능하지만, 시스템에 대해 정확한 이해가 어려워진 다양하고 복잡한 시스템에서는 원하는 정보를 획득하는 것이 점점 더 어려워진다. 이러한 문제는 데이터를 사람뿐 아니라 컴퓨터가 이해할 수 있는 온톨로지로 표현하여 다양한 정보처리가 가능하도록 하는 시맨틱 웹(Semantic Web) 구축이 해결책이 될 수 있다. 군에서도 현재 대부분의 업무가 정보 시스템을 통해 이루어지고 있는데, 정보의 입력이나 가공 등 단순처리 중심으로 구축된 기존 시스템이 점점 더 많은 양의 데이터를 포함하게 되면서 시스템을 쉽게 활용하기 위한 노력이 필요한 상황이다. 본 연구에서는 온톨로지를 통한 지능형 의사결정지원시스템의 예로 온톨로지 기반 군수상황관리체계를 제안하고자 한다. 온톨로지 기반 군수상황관리체계는 기존의 군수정보체계의 복잡한 정보를 직관적으로 보여주기 위해 구축된 군수상황관리체계를 온톨로지를 통해 구축하였으며, 성과기반군수지원 계약관리, 부품사전 등의 유용한 기능을 추가 식별하여 온톨로지에 포함하였다. 또한 구축된 온톨로지가 의사결정지원에 활용할 수 있는지를 확인하기 위해 시맨틱 웹 기술을 통해 기본적인 질의응답은 물론 추론 및 함수를 통한 분석기능을 구현하였다.

뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구 (A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network)

  • 양윤석;이현준;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.25-38
    • /
    • 2019
  • 정보화 시대의 넘쳐나는 콘텐츠들 속에서 사용자의 관심과 요구에 맞는 양질의 정보를 선별해내는 과정은 세대를 거듭할수록 더욱 중요해지고 있다. 정보의 홍수 속에서 사용자의 정보 요구를 단순한 문자열로 인식하지 않고, 의미적으로 파악하여 검색결과에 사용자 의도를 더 정확하게 반영하고자 하는 노력이 이루어지고 있다. 구글이나 마이크로소프트와 같은 대형 IT 기업들도 시멘틱 기술을 기반으로 사용자에게 만족도와 편의성을 제공하는 검색엔진 및 지식기반기술의 개발에 집중하고 있다. 특히 금융 분야는 끊임없이 방대한 새로운 정보가 발생하며 초기의 정보일수록 큰 가치를 지녀 텍스트 데이터 분석과 관련된 연구의 효용성과 발전 가능성이 기대되는 분야 중 하나이다. 따라서, 본 연구는 주식 관련 정보검색의 시멘틱 성능을 향상시키기 위해 주식 개별종목을 대상으로 뉴럴 텐서 네트워크를 활용한 지식 개체명 추출과 이에 대한 성능평가를 시도하고자 한다. 뉴럴 텐서 네트워크 관련 기존 주요 연구들이 추론을 통해 지식 개체명들 사이의 관계 탐색을 주로 목표로 하였다면, 본 연구는 주식 개별종목과 관련이 있는 지식 개체명 자체의 추출을 주목적으로 한다. 기존 관련 연구의 문제점들을 해결하고 모형의 실효성과 현실성을 높이기 위한 다양한 데이터 처리 방법이 모형설계 과정에서 적용되며, 객관적인 성능 평가를 위한 실증 분석 결과와 분석 내용을 제시한다. 2017년 5월 30일부터 2018년 5월 21일 사이에 발생한 전문가 리포트를 대상으로 실증 분석을 진행한 결과, 제시된 모형을 통해 추출된 개체명들은 개별종목이 이름을 약 69% 정확도로 예측하였다. 이러한 결과는 본 연구에서 제시하는 모형의 활용 가능성을 보여주고 있으며, 후속 연구와 모형 개선을 통한 성과의 제고가 가능하다는 것을 의미한다. 마지막으로 종목명 예측 테스트를 통해 본 연구에서 제시한 학습 방법이 새로운 텍스트 정보를 의미적으로 접근하여 관련주식 종목과 매칭시키는 목적으로 사용될 수 있는 가능성을 확인하였다.