• Title/Summary/Keyword: Search operator

Search Result 131, Processing Time 0.021 seconds

The Fuzzy Modeling by Virus-messy Genetic Algorithm (바이러스-메시 유전 알고리즘에 의한 퍼지 모델링)

  • 최종일;이연우;주영훈;박진배
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.11a
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

Multi Case Non-Convex Economic Dispatch Problem Solving by Implementation of Multi-Operator Imperialist Competitive Algorithm

  • Eghbalpour, Hamid;Nabatirad, Mohammadreza
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1417-1426
    • /
    • 2017
  • Power system analysis, Non-Convex Economic Dispatch (NED) is considered as an open and demanding optimization problem. Despite the fact that realistic ED problems have non-convex cost functions with equality and inequality constraints, conventional search methods have not been able to effectively find the global answers. Considering the great potential of meta-heuristic optimization techniques, many researchers have started applying these techniques in order to solve NED problems. In this paper, a new and efficient approach is proposed based on imperialist competitive algorithm (ICA). The proposed algorithm which is named multi-operator ICA (MuICA) merges three operators with the original ICA in order to simultaneously avoid the premature convergence and achieve the global optimum answer. In this study, the proposed algorithm has been applied to different test systems and the results have been compared with other optimization methods, tending to study the performance of the MuICA. Simulation results are the confirmation of superior performance of MuICA in solving NED problems.

Performance Improvement of Genetic Algorithms by Reinforcement Learning (강화학습을 통한 유전자 알고리즘의 성능개선)

  • 이상환;전효병;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.03a
    • /
    • pp.81-84
    • /
    • 1998
  • Genetic Algorithms (GAs) are stochastic algorithms whose search methods model some natural phenomena. The procedure of GAs may be divided into two sub-procedures : Operation and Selection. Chromosomes can produce new offspring by means of operation, and the fitter chromosomes can produce more offspring than the less fit ones by means of selection. However, operation which is executed randomly and has some limits to its execution can not guarantee to produce fitter chromosomes. Thus, we propose a method which gives a directional information to the genetic operator by reinforcement learning. It can be achived by using neural networks to apply reinforcement learning to the genetic operator. We use the amount of fitness change which can be considered as reinforcement signal to calcualte the error terms for the output units. Then the weights are updated using backpropagtion algorithm. The performance improvement of GAs using reinforcement learning can be measured by applying the pr posed method to GA-hard problem.

  • PDF

Algorithms on layout design for overhead facility (천장형 설비의 배치 설계를 위한 해법의 개발)

  • Yang, Byoung-Hak
    • Journal of the Korea Safety Management & Science
    • /
    • v.13 no.1
    • /
    • pp.133-142
    • /
    • 2011
  • Overhead facility design problem(OFDP) is one of the shortest rectilinear flow network problem(SRFNP)[4]. Genetic algorithm(GA), artificial immune system(AIS), population management genetic algorithm (PM) and greedy randomized adaptive search procedures (GRASP) were introduced to solve OFDP. A path matrix formed individual was designed to represent rectilinear path between each facility. An exchange crossover operator and an exchange mutation operator were introduced for OFDP. Computer programs for each algorithm were constructed to evaluate the performance of algorithms. Computation experiments were performed on the quality of solution and calculations time by using randomly generated test problems. The average object value of PM was the best of among four algorithms. The quality of solutions of AIS for the big sized problem were better than those of GA and GRASP. The solution quality of GRASP was the worst among four algorithms. Experimental results showed that the calculations time of GRASP was faster than any other algorithm. GA and PM had shown similar performance on calculation time and the calculation time of AIS was the worst.

Implementation of GA Processor with Multiple Operators, Based on Subpopulation Architecture (분할구조 기반의 다기능 연산 유전자 알고리즘 프로세서의 구현)

  • Cho Min-Sok;Chung Duck-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.295-304
    • /
    • 2003
  • In this paper, we proposed a hardware-oriented Genetic Algorithm Processor(GAP) based on subpopulation architecture for high-performance convergence and reducing computation time. The proposed architecture was applied to enhancing population diversity for correspondence to premature convergence. In addition, the crossover operator selection and linear ranking subpop selection were newly employed for efficient exploration. As stochastic search space selection through linear ranking and suitable genetic operator selection with respect to the convergence state of each subpopulation was used, the elapsed time of searching optimal solution was shortened. In the experiments, the computation speed was increased by over $10\%$ compared to survival-based GA and Modified-tournament GA. Especially, increased by over $20\%$ in the multi-modal function. The proposed Subpop GA processor was implemented on FPGA device APEX EP20K600EBC652-3 of AGENT 2000 design kit.

Comparison of Adaptive Operators in Genetic Algorithms (유전알고리즘에서 적응적 연산자들의 비교연구)

  • Yun, Young-Su;Seo, Seoun-Lock
    • Journal of Intelligence and Information Systems
    • /
    • v.8 no.2
    • /
    • pp.189-203
    • /
    • 2002
  • In this paper we compare the performances of adaptive operators in genetic algorithm. For the adaptive operators, the crossover and mutation operators of genetic algorithm are considered. One fuzzy logic controller is developed in this paper and two heuristics is presented from conventional works for constructing the operators. The fuzzy logic controller and two conventional heuristics adaptively regulate the rates of the operators during genetic search process. All the algorithms are tested and analyzed in numerical examples. Finally, the best algorithm is recommended.

  • PDF

Development of a Tank Crew Protection System Using Moving Object Area Detection from Vision based (비전 기반 움직임 영역 탐지를 이용한 전차 승무원 보호 시스템 개발)

  • Choi, Kwang-Mo;Jang, Dong-Sik
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.2 s.21
    • /
    • pp.14-21
    • /
    • 2005
  • This paper describes the system for detecting the tank crew's(loader's) hand, arm, head and the upper half of the body in a danger area between the turret ceiling and the upper breech mechanism by computer vision-based method. This system informs danger of pressed to death to gunner and commander for the safety of operating mission. The camera mounted ort the top portion of the turret ceiling. The system sets search moving object from this image and detects by using change of image, laplacian operator and clustering algorithm in this area. It alarms the tank crews when it's judged that dangerous situation for operating mission. The result In this experiment shows that the detection rate maintains in $81{\sim}98$ percents.

Abnormal Crowd Behavior Detection Using Heuristic Search and Motion Awareness

  • Usman, Imran;Albesher, Abdulaziz A.
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.4
    • /
    • pp.131-139
    • /
    • 2021
  • In current time, anomaly detection is the primary concern of the administrative authorities. Suspicious activity identification is shifting from a human operator to a machine-assisted monitoring in order to assist the human operator and react to an unexpected incident quickly. These automatic surveillance systems face many challenges due to the intrinsic complex characteristics of video sequences and foreground human motion patterns. In this paper, we propose a novel approach to detect anomalous human activity using a hybrid approach of statistical model and Genetic Programming. The feature-set of local motion patterns is generated by a statistical model from the video data in an unsupervised way. This features set is inserted to an enhanced Genetic Programming based classifier to classify normal and abnormal patterns. The experiments are performed using publicly available benchmark datasets under different real-life scenarios. Results show that the proposed methodology is capable to detect and locate the anomalous activity in the real time. The accuracy of the proposed scheme exceeds those of the existing state of the art in term of anomalous activity detection.

STUDY ON THE REAL TIME VOLTAGE-REACTIVE POWER CONTROL USING THE FUZZY THEORY (FUZZY 이론을 이용한 전압.무효전력의 순서제어에 관한 연구)

  • Song, K.Y.;Kim, S.Y.;Cho, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.231-234
    • /
    • 1990
  • This paper shows real-time control technique of voltage-reactive power using the fuzzy theory. Here, major benefits of applying the fuzzy set theory as follow. First, heuristic knowledge of operator has been used in the operation and control of power system. Second, difficulties in traditional multi-objective numerical solution methods have been solved. Also, to achieve optimizing process on the voltage-reactive power control conventional search method have been used.

  • PDF

A LIFE PREDICTION OF LDPE DEGRADATION PROCESSING USING PARAMETERS (파라미터를 이용한 LDPE 절연열화 과정의 수면예측)

  • Kim, Sung-Hong;Seo, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.07e
    • /
    • pp.40-43
    • /
    • 2000
  • Our studies diagnose insulation degradation using the method of computer sensing system, which has the advantages of PD(partial discharge) and AE(acoustic emission) sensing system. To use advantages of these two methods can be used effectively to search for treeing location and PD in some materials. In analysis method of degradation, using statically operator such as the center of gravity (G), the gradient of the discharge distribution(C), we have analyzed for the prediction of life which we can be obtained the time, occurred of many pulse of small discharge amplitude.

  • PDF